| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximssdv | GIF version | ||
| Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴 ⊆ 𝐵), deduction form. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| reximssdv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| reximssdv.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) |
| reximssdv.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| reximssdv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximssdv.1 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | |
| 2 | reximssdv.2 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝑥 ∈ 𝐴) | |
| 3 | reximssdv.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → 𝜒) | |
| 4 | 2, 3 | jca 306 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝜓)) → (𝑥 ∈ 𝐴 ∧ 𝜒)) |
| 5 | 4 | ex 115 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 6 | 5 | reximdv2 2596 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 7 | 1, 6 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-rex 2481 |
| This theorem is referenced by: suplocexprlemrl 7784 neissex 14401 iscnp4 14454 suplociccex 14861 |
| Copyright terms: Public domain | W3C validator |