ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximssdv GIF version

Theorem reximssdv 2610
Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies 𝐴𝐵), deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
reximssdv.1 (𝜑 → ∃𝑥𝐵 𝜓)
reximssdv.2 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝑥𝐴)
reximssdv.3 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝜒)
Assertion
Ref Expression
reximssdv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem reximssdv
StepHypRef Expression
1 reximssdv.1 . 2 (𝜑 → ∃𝑥𝐵 𝜓)
2 reximssdv.2 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝑥𝐴)
3 reximssdv.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝜓)) → 𝜒)
42, 3jca 306 . . . 4 ((𝜑 ∧ (𝑥𝐵𝜓)) → (𝑥𝐴𝜒))
54ex 115 . . 3 (𝜑 → ((𝑥𝐵𝜓) → (𝑥𝐴𝜒)))
65reximdv2 2605 . 2 (𝜑 → (∃𝑥𝐵 𝜓 → ∃𝑥𝐴 𝜒))
71, 6mpd 13 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2176  wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-rex 2490
This theorem is referenced by:  suplocexprlemrl  7830  neissex  14637  iscnp4  14690  suplociccex  15097
  Copyright terms: Public domain W3C validator