ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximddv2 GIF version

Theorem reximddv2 2575
Description: Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
reximddv2.1 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
reximddv2.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
reximddv2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
Distinct variable groups:   𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem reximddv2
StepHypRef Expression
1 reximddv2.1 . . . . 5 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
21ex 114 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32reximdva 2572 . . 3 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 → ∃𝑦𝐵 𝜒))
43impr 377 . 2 ((𝜑 ∧ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜓)) → ∃𝑦𝐵 𝜒)
5 reximddv2.2 . 2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
64, 5reximddv 2573 1 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453  df-rex 2454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator