Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reximddv2 | GIF version |
Description: Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
reximddv2.1 | ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) |
reximddv2.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
reximddv2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddv2.1 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 114 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
3 | 2 | reximdva 2566 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → ∃𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | impr 377 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜓)) → ∃𝑦 ∈ 𝐵 𝜒) |
5 | reximddv2.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
6 | 4, 5 | reximddv 2567 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2135 ∃wrex 2443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-4 1497 ax-17 1513 ax-ial 1521 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-ral 2447 df-rex 2448 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |