ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximdva0m GIF version

Theorem reximdva0m 3475
Description: Restricted existence deduced from inhabited class. (Contributed by Jim Kingdon, 31-Jul-2018.)
Hypothesis
Ref Expression
reximdva0m.1 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
reximdva0m ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem reximdva0m
StepHypRef Expression
1 reximdva0m.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝜓)
21ex 115 . . . . 5 (𝜑 → (𝑥𝐴𝜓))
32ancld 325 . . . 4 (𝜑 → (𝑥𝐴 → (𝑥𝐴𝜓)))
43eximdv 1902 . . 3 (𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜓)))
54imp 124 . 2 ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥(𝑥𝐴𝜓))
6 df-rex 2489 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
75, 6sylibr 134 1 ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1514  wcel 2175  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-rex 2489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator