ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximdva0m GIF version

Theorem reximdva0m 3284
Description: Restricted existence deduced from inhabited class. (Contributed by Jim Kingdon, 31-Jul-2018.)
Hypothesis
Ref Expression
reximdva0m.1 ((𝜑𝑥𝐴) → 𝜓)
Assertion
Ref Expression
reximdva0m ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem reximdva0m
StepHypRef Expression
1 reximdva0m.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝜓)
21ex 113 . . . . 5 (𝜑 → (𝑥𝐴𝜓))
32ancld 318 . . . 4 (𝜑 → (𝑥𝐴 → (𝑥𝐴𝜓)))
43eximdv 1805 . . 3 (𝜑 → (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝜓)))
54imp 122 . 2 ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥(𝑥𝐴𝜓))
6 df-rex 2361 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
75, 6sylibr 132 1 ((𝜑 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wex 1424  wcel 1436  wrex 2356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-4 1443  ax-17 1462  ax-ial 1470
This theorem depends on definitions:  df-bi 115  df-rex 2361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator