![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neq0r | GIF version |
Description: An inhabited class is nonempty. See n0rf 3278 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.) |
Ref | Expression |
---|---|
neq0r | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0r 3279 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | 1 | neneqd 2270 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ¬ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1285 ∃wex 1422 ∈ wcel 1434 ∅c0 3269 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-v 2614 df-dif 2986 df-nul 3270 |
This theorem is referenced by: fzn 9350 |
Copyright terms: Public domain | W3C validator |