ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neq0r GIF version

Theorem neq0r 3476
Description: An inhabited class is nonempty. See n0rf 3474 for more discussion. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
neq0r (∃𝑥 𝑥𝐴 → ¬ 𝐴 = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem neq0r
StepHypRef Expression
1 n0r 3475 . 2 (∃𝑥 𝑥𝐴𝐴 ≠ ∅)
21neneqd 2398 1 (∃𝑥 𝑥𝐴 → ¬ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wex 1516  wcel 2177  c0 3461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3169  df-nul 3462
This theorem is referenced by:  exmidsssn  4250  fzn  10171
  Copyright terms: Public domain W3C validator