ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancld GIF version

Theorem ancld 323
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancld (𝜑 → (𝜓 → (𝜓𝜒)))

Proof of Theorem ancld
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜓𝜓))
2 ancld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2jcad 305 1 (𝜑 → (𝜓 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  mopick2  2102  cgsexg  2765  cgsex2g  2766  cgsex4g  2767  reximdva0m  3430  difsn  3717  preq12b  3757  elres  4927  relssres  4929  fnoprabg  5954  1idprl  7552  1idpru  7553  msqge0  8535  mulge0  8538  fzospliti  10132  algcvga  12005  prmind2  12074  sqrt2irr  12116  grpinveu  12741  metrest  13300  2sqlem10  13755
  Copyright terms: Public domain W3C validator