ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancld GIF version

Theorem ancld 325
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancld (𝜑 → (𝜓 → (𝜓𝜒)))

Proof of Theorem ancld
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜓𝜓))
2 ancld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2jcad 307 1 (𝜑 → (𝜓 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mopick2  2161  cgsexg  2835  cgsex2g  2836  cgsex4g  2837  reximdva0m  3507  difsn  3804  preq12b  3847  elres  5040  relssres  5042  fnoprabg  6104  1idprl  7773  1idpru  7774  msqge0  8759  mulge0  8762  fzospliti  10370  algcvga  12568  prmind2  12637  sqrt2irr  12679  grpinveu  13566  metrest  15174  2sqlem10  15798
  Copyright terms: Public domain W3C validator