| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancld | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 307 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mopick2 2136 cgsexg 2806 cgsex2g 2807 cgsex4g 2808 reximdva0m 3475 difsn 3769 preq12b 3810 elres 4994 relssres 4996 fnoprabg 6045 1idprl 7702 1idpru 7703 msqge0 8688 mulge0 8691 fzospliti 10298 algcvga 12315 prmind2 12384 sqrt2irr 12426 grpinveu 13312 metrest 14920 2sqlem10 15544 |
| Copyright terms: Public domain | W3C validator |