ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancld GIF version

Theorem ancld 325
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancld (𝜑 → (𝜓 → (𝜓𝜒)))

Proof of Theorem ancld
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜓𝜓))
2 ancld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2jcad 307 1 (𝜑 → (𝜓 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mopick2  2138  cgsexg  2809  cgsex2g  2810  cgsex4g  2811  reximdva0m  3480  difsn  3776  preq12b  3817  elres  5004  relssres  5006  fnoprabg  6059  1idprl  7723  1idpru  7724  msqge0  8709  mulge0  8712  fzospliti  10320  algcvga  12448  prmind2  12517  sqrt2irr  12559  grpinveu  13445  metrest  15053  2sqlem10  15677
  Copyright terms: Public domain W3C validator