ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancld GIF version

Theorem ancld 325
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancld (𝜑 → (𝜓 → (𝜓𝜒)))

Proof of Theorem ancld
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜓𝜓))
2 ancld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2jcad 307 1 (𝜑 → (𝜓 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mopick2  2121  cgsexg  2787  cgsex2g  2788  cgsex4g  2789  reximdva0m  3453  difsn  3744  preq12b  3785  elres  4961  relssres  4963  fnoprabg  5997  1idprl  7619  1idpru  7620  msqge0  8603  mulge0  8606  fzospliti  10206  algcvga  12083  prmind2  12152  sqrt2irr  12194  grpinveu  12982  metrest  14466  2sqlem10  14933
  Copyright terms: Public domain W3C validator