| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancld | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 307 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mopick2 2128 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 reximdva0m 3467 difsn 3760 preq12b 3801 elres 4983 relssres 4985 fnoprabg 6027 1idprl 7676 1idpru 7677 msqge0 8662 mulge0 8665 fzospliti 10271 algcvga 12246 prmind2 12315 sqrt2irr 12357 grpinveu 13242 metrest 14850 2sqlem10 15474 |
| Copyright terms: Public domain | W3C validator |