![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancld | GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | jcad 307 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: mopick2 2125 cgsexg 2795 cgsex2g 2796 cgsex4g 2797 reximdva0m 3462 difsn 3755 preq12b 3796 elres 4978 relssres 4980 fnoprabg 6019 1idprl 7650 1idpru 7651 msqge0 8635 mulge0 8638 fzospliti 10243 algcvga 12189 prmind2 12258 sqrt2irr 12300 grpinveu 13110 metrest 14674 2sqlem10 15212 |
Copyright terms: Public domain | W3C validator |