ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancld GIF version

Theorem ancld 325
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancld.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancld (𝜑 → (𝜓 → (𝜓𝜒)))

Proof of Theorem ancld
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜓𝜓))
2 ancld.1 . 2 (𝜑 → (𝜓𝜒))
31, 2jcad 307 1 (𝜑 → (𝜓 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mopick2  2136  cgsexg  2806  cgsex2g  2807  cgsex4g  2808  reximdva0m  3475  difsn  3769  preq12b  3810  elres  4994  relssres  4996  fnoprabg  6045  1idprl  7702  1idpru  7703  msqge0  8688  mulge0  8691  fzospliti  10298  algcvga  12315  prmind2  12384  sqrt2irr  12426  grpinveu  13312  metrest  14920  2sqlem10  15544
  Copyright terms: Public domain W3C validator