| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancld | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 307 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mopick2 2136 cgsexg 2806 cgsex2g 2807 cgsex4g 2808 reximdva0m 3475 difsn 3769 preq12b 3810 elres 4992 relssres 4994 fnoprabg 6036 1idprl 7685 1idpru 7686 msqge0 8671 mulge0 8674 fzospliti 10281 algcvga 12292 prmind2 12361 sqrt2irr 12403 grpinveu 13288 metrest 14896 2sqlem10 15520 |
| Copyright terms: Public domain | W3C validator |