| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | eximdh 1657 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximdv 1928 reximdv2 2629 cgsexg 2835 spc3egv 2895 euind 2990 ssel 3218 reupick 3488 reximdva0m 3507 uniss 3908 eusvnfb 4544 coss1 4876 coss2 4877 ssrelrn 4913 dmss 4921 dmcosseq 4995 funssres 5359 imain 5402 brprcneu 5619 fv3 5649 dffo4 5782 dffo5 5783 f1eqcocnv 5914 mapsn 6835 en2m 6972 ctssdccl 7274 acfun 7385 ccfunen 7446 cc4f 7451 cc4n 7453 dmaddpq 7562 dmmulpq 7563 recexprlemlol 7809 recexprlemupu 7811 ioom 10475 ctinfom 12994 ctinf 12996 omctfn 13009 nninfdclemp1 13016 ptex 13292 subgintm 13730 txcn 14943 |
| Copyright terms: Public domain | W3C validator |