| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | eximdh 1625 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximdv 1896 reximdv2 2596 cgsexg 2798 spc3egv 2856 euind 2951 ssel 3178 reupick 3448 reximdva0m 3467 uniss 3861 eusvnfb 4490 coss1 4822 coss2 4823 dmss 4866 dmcosseq 4938 funssres 5301 imain 5341 brprcneu 5554 fv3 5584 dffo4 5713 dffo5 5714 f1eqcocnv 5841 mapsn 6758 ctssdccl 7186 acfun 7290 ccfunen 7347 cc4f 7352 cc4n 7354 dmaddpq 7463 dmmulpq 7464 recexprlemlol 7710 recexprlemupu 7712 ioom 10367 ctinfom 12670 ctinf 12672 omctfn 12685 nninfdclemp1 12692 ptex 12966 subgintm 13404 txcn 14595 |
| Copyright terms: Public domain | W3C validator |