| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | eximdh 1633 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximdv 1904 reximdv2 2604 cgsexg 2806 spc3egv 2864 euind 2959 ssel 3186 reupick 3456 reximdva0m 3475 uniss 3870 eusvnfb 4500 coss1 4832 coss2 4833 dmss 4876 dmcosseq 4949 funssres 5312 imain 5355 brprcneu 5568 fv3 5598 dffo4 5727 dffo5 5728 f1eqcocnv 5859 mapsn 6776 ctssdccl 7212 acfun 7318 ccfunen 7375 cc4f 7380 cc4n 7382 dmaddpq 7491 dmmulpq 7492 recexprlemlol 7738 recexprlemupu 7740 ioom 10401 ctinfom 12770 ctinf 12772 omctfn 12785 nninfdclemp1 12792 ptex 13067 subgintm 13505 txcn 14718 |
| Copyright terms: Public domain | W3C validator |