| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | eximdh 1635 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximdv 1906 reximdv2 2607 cgsexg 2812 spc3egv 2872 euind 2967 ssel 3195 reupick 3465 reximdva0m 3484 uniss 3885 eusvnfb 4519 coss1 4851 coss2 4852 ssrelrn 4888 dmss 4896 dmcosseq 4969 funssres 5332 imain 5375 brprcneu 5592 fv3 5622 dffo4 5751 dffo5 5752 f1eqcocnv 5883 mapsn 6800 en2m 6937 ctssdccl 7239 acfun 7350 ccfunen 7411 cc4f 7416 cc4n 7418 dmaddpq 7527 dmmulpq 7528 recexprlemlol 7774 recexprlemupu 7776 ioom 10440 ctinfom 12914 ctinf 12916 omctfn 12929 nninfdclemp1 12936 ptex 13211 subgintm 13649 txcn 14862 |
| Copyright terms: Public domain | W3C validator |