![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1487 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximdh 1571 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1449 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-4 1468 ax-17 1487 ax-ial 1495 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2eximdv 1834 reximdv2 2503 cgsexg 2690 spc3egv 2746 euind 2838 ssel 3055 reupick 3324 reximdva0m 3342 uniss 3721 eusvnfb 4333 coss1 4652 coss2 4653 dmss 4696 dmcosseq 4766 funssres 5121 imain 5161 brprcneu 5366 fv3 5396 dffo4 5520 dffo5 5521 f1eqcocnv 5644 mapsn 6536 ctssdccl 6946 acfun 7008 dmaddpq 7129 dmmulpq 7130 recexprlemlol 7376 recexprlemupu 7378 ioom 9925 ctinfom 11780 ctinf 11782 txcn 12280 |
Copyright terms: Public domain | W3C validator |