Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximdh 1599 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2eximdv 1870 reximdv2 2564 cgsexg 2760 spc3egv 2817 euind 2912 ssel 3135 reupick 3405 reximdva0m 3423 uniss 3809 eusvnfb 4431 coss1 4758 coss2 4759 dmss 4802 dmcosseq 4874 funssres 5229 imain 5269 brprcneu 5478 fv3 5508 dffo4 5632 dffo5 5633 f1eqcocnv 5758 mapsn 6652 ctssdccl 7072 acfun 7159 ccfunen 7201 cc4f 7206 cc4n 7208 dmaddpq 7316 dmmulpq 7317 recexprlemlol 7563 recexprlemupu 7565 ioom 10192 ctinfom 12357 ctinf 12359 omctfn 12372 nninfdclemp1 12379 txcn 12875 |
Copyright terms: Public domain | W3C validator |