| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | eximdh 1625 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2eximdv 1896 reximdv2 2596 cgsexg 2798 spc3egv 2856 euind 2951 ssel 3177 reupick 3447 reximdva0m 3466 uniss 3860 eusvnfb 4489 coss1 4821 coss2 4822 dmss 4865 dmcosseq 4937 funssres 5300 imain 5340 brprcneu 5551 fv3 5581 dffo4 5710 dffo5 5711 f1eqcocnv 5838 mapsn 6749 ctssdccl 7177 acfun 7274 ccfunen 7331 cc4f 7336 cc4n 7338 dmaddpq 7446 dmmulpq 7447 recexprlemlol 7693 recexprlemupu 7695 ioom 10350 ctinfom 12645 ctinf 12647 omctfn 12660 nninfdclemp1 12667 ptex 12935 subgintm 13328 txcn 14511 |
| Copyright terms: Public domain | W3C validator |