Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximdh 1604 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2eximdv 1875 reximdv2 2569 cgsexg 2765 spc3egv 2822 euind 2917 ssel 3141 reupick 3411 reximdva0m 3430 uniss 3817 eusvnfb 4439 coss1 4766 coss2 4767 dmss 4810 dmcosseq 4882 funssres 5240 imain 5280 brprcneu 5489 fv3 5519 dffo4 5644 dffo5 5645 f1eqcocnv 5770 mapsn 6668 ctssdccl 7088 acfun 7184 ccfunen 7226 cc4f 7231 cc4n 7233 dmaddpq 7341 dmmulpq 7342 recexprlemlol 7588 recexprlemupu 7590 ioom 10217 ctinfom 12383 ctinf 12385 omctfn 12398 nninfdclemp1 12405 txcn 13069 |
Copyright terms: Public domain | W3C validator |