![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximdv | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximdh 1622 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2eximdv 1893 reximdv2 2593 cgsexg 2795 spc3egv 2852 euind 2947 ssel 3173 reupick 3443 reximdva0m 3462 uniss 3856 eusvnfb 4485 coss1 4817 coss2 4818 dmss 4861 dmcosseq 4933 funssres 5296 imain 5336 brprcneu 5547 fv3 5577 dffo4 5706 dffo5 5707 f1eqcocnv 5834 mapsn 6744 ctssdccl 7170 acfun 7267 ccfunen 7324 cc4f 7329 cc4n 7331 dmaddpq 7439 dmmulpq 7440 recexprlemlol 7686 recexprlemupu 7688 ioom 10329 ctinfom 12585 ctinf 12587 omctfn 12600 nninfdclemp1 12607 ptex 12875 subgintm 13268 txcn 14443 |
Copyright terms: Public domain | W3C validator |