Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > n0mmoeu | GIF version |
Description: A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.) |
Ref | Expression |
---|---|
n0mmoeu | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmoeu2 2062 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1480 ∃!weu 2014 ∃*wmo 2015 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |