Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > n0mmoeu | GIF version |
Description: A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.) |
Ref | Expression |
---|---|
n0mmoeu | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmoeu2 2072 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1490 ∃!weu 2024 ∃*wmo 2025 ∈ wcel 2146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |