![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > n0mmoeu | GIF version |
Description: A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.) |
Ref | Expression |
---|---|
n0mmoeu | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmoeu2 2008 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃!𝑥 𝑥 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1436 ∈ wcel 1448 ∃!weu 1960 ∃*wmo 1961 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |