ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0mmoeu GIF version

Theorem n0mmoeu 3508
Description: A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0mmoeu (∃𝑥 𝑥𝐴 → (∃*𝑥 𝑥𝐴 ↔ ∃!𝑥 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem n0mmoeu
StepHypRef Expression
1 exmoeu2 2126 1 (∃𝑥 𝑥𝐴 → (∃*𝑥 𝑥𝐴 ↔ ∃!𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1538  ∃!weu 2077  ∃*wmo 2078  wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator