| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mobid | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| mobid.1 | ⊢ Ⅎ𝑥𝜑 |
| mobid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobid | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mobid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbid 1638 | . . 3 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| 4 | 1, 2 | eubid 2060 | . . 3 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| 5 | 3, 4 | imbi12d 234 | . 2 ⊢ (𝜑 → ((∃𝑥𝜓 → ∃!𝑥𝜓) ↔ (∃𝑥𝜒 → ∃!𝑥𝜒))) |
| 6 | df-mo 2057 | . 2 ⊢ (∃*𝑥𝜓 ↔ (∃𝑥𝜓 → ∃!𝑥𝜓)) | |
| 7 | df-mo 2057 | . 2 ⊢ (∃*𝑥𝜒 ↔ (∃𝑥𝜒 → ∃!𝑥𝜒)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1482 ∃wex 1514 ∃!weu 2053 ∃*wmo 2054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-eu 2056 df-mo 2057 |
| This theorem is referenced by: mobidv 2089 rmobida 2692 rmoeq1f 2700 |
| Copyright terms: Public domain | W3C validator |