| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.32da | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.32d 450 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2492 reubida 2679 rmobida 2684 mpteq12f 4114 reuhypd 4507 funbrfv2b 5608 dffn5im 5609 eqfnfv2 5663 fndmin 5672 fniniseg 5685 rexsupp 5689 fmptco 5731 dff13 5818 riotabidva 5897 mpoeq123dva 5987 mpoeq3dva 5990 mpoxopovel 6308 qliftfun 6685 erovlem 6695 xpcomco 6894 pw2f1odclem 6904 elfi2 7047 ctssdccl 7186 ltexpi 7423 dfplpq2 7440 axprecex 7966 zrevaddcl 9395 qrevaddcl 9737 icoshft 10084 fznn 10183 shftdm 11006 2shfti 11015 sumeq2 11543 fsum3 11571 fsum2dlemstep 11618 prodeq2 11741 fprodseq 11767 bitsmod 12140 bitscmp 12142 gcdaddm 12178 grpidpropdg 13078 ismgmid 13081 gsumpropd2 13097 mhmpropd 13170 issubm2 13177 eqgid 13434 eqgabl 13538 rngpropd 13589 iscrng2 13649 ringpropd 13672 crngpropd 13673 crngunit 13745 dvdsrpropdg 13781 issubrg3 13881 lsslss 14015 lsspropdg 14065 znleval 14287 bastop2 14428 restopn2 14527 iscnp3 14547 lmbr2 14558 txlm 14623 ismet2 14698 xblpnfps 14742 xblpnf 14743 blininf 14768 blres 14778 elmopn2 14793 neibl 14835 metrest 14850 metcnp3 14855 metcnp 14856 metcnp2 14857 metcn 14858 txmetcn 14863 cnbl0 14878 cnblcld 14879 bl2ioo 14894 elcncf2 14918 cncfmet 14936 cnlimc 15016 lgsquadlem1 15426 lgsquadlem2 15427 2lgslem1a 15437 |
| Copyright terms: Public domain | W3C validator |