| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.32da | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.32d 450 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2525 reubida 2713 rmobida 2719 mpteq12f 4163 reuhypd 4559 funbrfv2b 5671 dffn5im 5672 eqfnfv2 5726 fndmin 5735 fniniseg 5748 rexsupp 5752 fmptco 5794 dff13 5885 riotabidva 5965 mpoeq123dva 6056 mpoeq3dva 6059 mpoxopovel 6377 qliftfun 6754 erovlem 6764 xpcomco 6973 pw2f1odclem 6983 elfi2 7127 ctssdccl 7266 ltexpi 7512 dfplpq2 7529 axprecex 8055 zrevaddcl 9485 qrevaddcl 9827 icoshft 10174 fznn 10273 pfxeq 11214 pfxsuffeqwrdeq 11216 pfxsuff1eqwrdeq 11217 shftdm 11319 2shfti 11328 sumeq2 11856 fsum3 11884 fsum2dlemstep 11931 prodeq2 12054 fprodseq 12080 bitsmod 12453 bitscmp 12455 gcdaddm 12491 grpidpropdg 13393 ismgmid 13396 gsumpropd2 13412 mhmpropd 13485 issubm2 13492 eqgid 13749 eqgabl 13853 rngpropd 13904 iscrng2 13964 ringpropd 13987 crngpropd 13988 crngunit 14060 dvdsrpropdg 14096 issubrg3 14196 lsslss 14330 lsspropdg 14380 znleval 14602 bastop2 14743 restopn2 14842 iscnp3 14862 lmbr2 14873 txlm 14938 ismet2 15013 xblpnfps 15057 xblpnf 15058 blininf 15083 blres 15093 elmopn2 15108 neibl 15150 metrest 15165 metcnp3 15170 metcnp 15171 metcnp2 15172 metcn 15173 txmetcn 15178 cnbl0 15193 cnblcld 15194 bl2ioo 15209 elcncf2 15233 cncfmet 15251 cnlimc 15331 lgsquadlem1 15741 lgsquadlem2 15742 2lgslem1a 15752 |
| Copyright terms: Public domain | W3C validator |