| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.32da | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.32d 450 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2492 reubida 2679 rmobida 2684 mpteq12f 4114 reuhypd 4507 funbrfv2b 5608 dffn5im 5609 eqfnfv2 5663 fndmin 5672 fniniseg 5685 rexsupp 5689 fmptco 5731 dff13 5818 riotabidva 5897 mpoeq123dva 5987 mpoeq3dva 5990 mpoxopovel 6308 qliftfun 6685 erovlem 6695 xpcomco 6894 pw2f1odclem 6904 elfi2 7047 ctssdccl 7186 ltexpi 7421 dfplpq2 7438 axprecex 7964 zrevaddcl 9393 qrevaddcl 9735 icoshft 10082 fznn 10181 shftdm 11004 2shfti 11013 sumeq2 11541 fsum3 11569 fsum2dlemstep 11616 prodeq2 11739 fprodseq 11765 bitsmod 12138 bitscmp 12140 gcdaddm 12176 grpidpropdg 13076 ismgmid 13079 gsumpropd2 13095 mhmpropd 13168 issubm2 13175 eqgid 13432 eqgabl 13536 rngpropd 13587 iscrng2 13647 ringpropd 13670 crngpropd 13671 crngunit 13743 dvdsrpropdg 13779 issubrg3 13879 lsslss 14013 lsspropdg 14063 znleval 14285 bastop2 14404 restopn2 14503 iscnp3 14523 lmbr2 14534 txlm 14599 ismet2 14674 xblpnfps 14718 xblpnf 14719 blininf 14744 blres 14754 elmopn2 14769 neibl 14811 metrest 14826 metcnp3 14831 metcnp 14832 metcnp2 14833 metcn 14834 txmetcn 14839 cnbl0 14854 cnblcld 14855 bl2ioo 14870 elcncf2 14894 cncfmet 14912 cnlimc 14992 lgsquadlem1 15402 lgsquadlem2 15403 2lgslem1a 15413 |
| Copyright terms: Public domain | W3C validator |