| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.32da | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.32d 450 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2525 reubida 2713 rmobida 2719 mpteq12f 4164 reuhypd 4562 funbrfv2b 5680 dffn5im 5681 eqfnfv2 5735 fndmin 5744 fniniseg 5757 rexsupp 5761 fmptco 5803 dff13 5898 riotabidva 5978 mpoeq123dva 6071 mpoeq3dva 6074 mpoxopovel 6393 qliftfun 6772 erovlem 6782 xpcomco 6993 pw2f1odclem 7003 elfi2 7147 ctssdccl 7286 ltexpi 7532 dfplpq2 7549 axprecex 8075 zrevaddcl 9505 qrevaddcl 9847 icoshft 10194 fznn 10293 pfxeq 11236 pfxsuffeqwrdeq 11238 pfxsuff1eqwrdeq 11239 shftdm 11341 2shfti 11350 sumeq2 11878 fsum3 11906 fsum2dlemstep 11953 prodeq2 12076 fprodseq 12102 bitsmod 12475 bitscmp 12477 gcdaddm 12513 grpidpropdg 13415 ismgmid 13418 gsumpropd2 13434 mhmpropd 13507 issubm2 13514 eqgid 13771 eqgabl 13875 rngpropd 13926 iscrng2 13986 ringpropd 14009 crngpropd 14010 crngunit 14083 dvdsrpropdg 14119 issubrg3 14219 lsslss 14353 lsspropdg 14403 znleval 14625 bastop2 14766 restopn2 14865 iscnp3 14885 lmbr2 14896 txlm 14961 ismet2 15036 xblpnfps 15080 xblpnf 15081 blininf 15106 blres 15116 elmopn2 15131 neibl 15173 metrest 15188 metcnp3 15193 metcnp 15194 metcnp2 15195 metcn 15196 txmetcn 15201 cnbl0 15216 cnblcld 15217 bl2ioo 15232 elcncf2 15256 cncfmet 15274 cnlimc 15354 lgsquadlem1 15764 lgsquadlem2 15765 2lgslem1a 15775 upgriswlkdc 16081 |
| Copyright terms: Public domain | W3C validator |