| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.32da | GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
| Ref | Expression |
|---|---|
| pm5.32da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| pm5.32da | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| 3 | 2 | pm5.32d 450 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: rexbida 2502 reubida 2689 rmobida 2694 mpteq12f 4129 reuhypd 4523 funbrfv2b 5633 dffn5im 5634 eqfnfv2 5688 fndmin 5697 fniniseg 5710 rexsupp 5714 fmptco 5756 dff13 5847 riotabidva 5926 mpoeq123dva 6016 mpoeq3dva 6019 mpoxopovel 6337 qliftfun 6714 erovlem 6724 xpcomco 6933 pw2f1odclem 6943 elfi2 7086 ctssdccl 7225 ltexpi 7463 dfplpq2 7480 axprecex 8006 zrevaddcl 9436 qrevaddcl 9778 icoshft 10125 fznn 10224 pfxeq 11161 pfxsuffeqwrdeq 11163 pfxsuff1eqwrdeq 11164 shftdm 11183 2shfti 11192 sumeq2 11720 fsum3 11748 fsum2dlemstep 11795 prodeq2 11918 fprodseq 11944 bitsmod 12317 bitscmp 12319 gcdaddm 12355 grpidpropdg 13256 ismgmid 13259 gsumpropd2 13275 mhmpropd 13348 issubm2 13355 eqgid 13612 eqgabl 13716 rngpropd 13767 iscrng2 13827 ringpropd 13850 crngpropd 13851 crngunit 13923 dvdsrpropdg 13959 issubrg3 14059 lsslss 14193 lsspropdg 14243 znleval 14465 bastop2 14606 restopn2 14705 iscnp3 14725 lmbr2 14736 txlm 14801 ismet2 14876 xblpnfps 14920 xblpnf 14921 blininf 14946 blres 14956 elmopn2 14971 neibl 15013 metrest 15028 metcnp3 15033 metcnp 15034 metcnp2 15035 metcn 15036 txmetcn 15041 cnbl0 15056 cnblcld 15057 bl2ioo 15072 elcncf2 15096 cncfmet 15114 cnlimc 15194 lgsquadlem1 15604 lgsquadlem2 15605 2lgslem1a 15615 |
| Copyright terms: Public domain | W3C validator |