![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.32da | GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 9-Dec-2006.) |
Ref | Expression |
---|---|
pm5.32da.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
pm5.32da | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | ex 113 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
3 | 2 | pm5.32d 438 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: rexbida 2375 reubida 2548 rmobida 2553 mpteq12f 3918 reuhypd 4293 funbrfv2b 5349 dffn5im 5350 eqfnfv2 5398 fndmin 5406 fniniseg 5419 rexsupp 5423 fmptco 5464 dff13 5547 riotabidva 5624 mpt2eq123dva 5710 mpt2eq3dva 5713 mpt2xopovel 6006 qliftfun 6372 erovlem 6382 xpcomco 6540 ltexpi 6894 dfplpq2 6911 axprecex 7413 zrevaddcl 8798 qrevaddcl 9127 icoshft 9405 fznn 9499 shftdm 10252 2shfti 10261 sumeq2 10744 fisum 10774 fsum2dlemstep 10824 gcdaddm 11249 elcncf2 11585 |
Copyright terms: Public domain | W3C validator |