ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbbi GIF version

Theorem spsbbi 1824
Description: Specialization of biconditional. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
Assertion
Ref Expression
spsbbi (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))

Proof of Theorem spsbbi
StepHypRef Expression
1 spsbim 1823 . . 3 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 spsbim 1823 . . 3 (∀𝑥(𝜓𝜑) → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))
31, 2anim12i 336 . 2 ((∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)) → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
4 albiim 1467 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))
5 dfbi2 386 . 2 (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
63, 4, 53imtr4i 200 1 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1333  [wsb 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-sb 1743
This theorem is referenced by:  sbbidh  1825  sbbid  1826  relelfvdm  5497
  Copyright terms: Public domain W3C validator