| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spsbbi | GIF version | ||
| Description: Specialization of biconditional. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.) |
| Ref | Expression |
|---|---|
| spsbbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbim 1857 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | spsbim 1857 | . . 3 ⊢ (∀𝑥(𝜓 → 𝜑) → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑)) → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))) |
| 4 | albiim 1501 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | |
| 5 | dfbi2 388 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sbbidh 1859 sbbid 1860 sbbidv 1899 relelfvdm 5590 |
| Copyright terms: Public domain | W3C validator |