ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceqbid GIF version

Theorem sbceqbid 2996
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbid.1 (𝜑𝐴 = 𝐵)
sbceqbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbceqbid (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem sbceqbid
StepHypRef Expression
1 sbceqbid.1 . . 3 (𝜑𝐴 = 𝐵)
2 sbceqbid.2 . . . 4 (𝜑 → (𝜓𝜒))
32abbidv 2314 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
41, 3eleq12d 2267 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐵 ∈ {𝑥𝜒}))
5 df-sbc 2990 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
6 df-sbc 2990 . 2 ([𝐵 / 𝑥]𝜒𝐵 ∈ {𝑥𝜒})
74, 5, 63bitr4g 223 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {cab 2182  [wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-sbc 2990
This theorem is referenced by:  issrg  13597  islmod  13923
  Copyright terms: Public domain W3C validator