| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceqbid | GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
| Ref | Expression |
|---|---|
| sbceqbid.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sbceqbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbceqbid | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqbid.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sbceqbid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | abbidv 2314 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
| 4 | 1, 3 | eleq12d 2267 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐵 ∈ {𝑥 ∣ 𝜒})) |
| 5 | df-sbc 2990 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 6 | df-sbc 2990 | . 2 ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝐵 ∈ {𝑥 ∣ 𝜒}) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 |
| This theorem is referenced by: issrg 13597 islmod 13923 |
| Copyright terms: Public domain | W3C validator |