| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1d | GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbceq1d | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dfsbcq 3030 | . 2 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 [wsbc 3028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-sbc 3029 |
| This theorem is referenced by: sbceq1dd 3034 rexrnmpt 5777 findcard2 7047 findcard2s 7048 ac6sfi 7056 nn1suc 9125 uzind4s 9781 uzind4s2 9782 fzrevral 10297 fzshftral 10300 wrdind 11249 wrd2ind 11250 cjth 11352 prmind2 12637 issrg 13923 islmod 14249 bj-bdfindes 16270 bj-findes 16302 |
| Copyright terms: Public domain | W3C validator |