| Step | Hyp | Ref
| Expression |
| 1 | | prmind.5 |
. 2
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) |
| 2 | | oveq2 5933 |
. . . 4
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
| 3 | 2 | raleqdv 2699 |
. . 3
⊢ (𝑛 = 1 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...1)𝜑)) |
| 4 | | oveq2 5933 |
. . . 4
⊢ (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘)) |
| 5 | 4 | raleqdv 2699 |
. . 3
⊢ (𝑛 = 𝑘 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝑘)𝜑)) |
| 6 | | oveq2 5933 |
. . . 4
⊢ (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1))) |
| 7 | 6 | raleqdv 2699 |
. . 3
⊢ (𝑛 = (𝑘 + 1) → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...(𝑘 + 1))𝜑)) |
| 8 | | oveq2 5933 |
. . . 4
⊢ (𝑛 = 𝐴 → (1...𝑛) = (1...𝐴)) |
| 9 | 8 | raleqdv 2699 |
. . 3
⊢ (𝑛 = 𝐴 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝐴)𝜑)) |
| 10 | | prmind.6 |
. . . . 5
⊢ 𝜓 |
| 11 | | elfz1eq 10127 |
. . . . . 6
⊢ (𝑥 ∈ (1...1) → 𝑥 = 1) |
| 12 | | prmind.1 |
. . . . . 6
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
| 13 | 11, 12 | syl 14 |
. . . . 5
⊢ (𝑥 ∈ (1...1) → (𝜑 ↔ 𝜓)) |
| 14 | 10, 13 | mpbiri 168 |
. . . 4
⊢ (𝑥 ∈ (1...1) → 𝜑) |
| 15 | 14 | rgen 2550 |
. . 3
⊢
∀𝑥 ∈
(1...1)𝜑 |
| 16 | | peano2nn 9019 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
| 17 | 16 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ) |
| 18 | 17 | nncnd 9021 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℂ) |
| 19 | | elfzuz 10113 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ∈
(ℤ≥‘2)) |
| 20 | 19 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈
(ℤ≥‘2)) |
| 21 | | eluz2nn 9657 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈
(ℤ≥‘2) → 𝑦 ∈ ℕ) |
| 22 | 20, 21 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℕ) |
| 23 | 22 | nncnd 9021 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℂ) |
| 24 | 22 | nnap0d 9053 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 # 0) |
| 25 | 18, 23, 24 | divcanap2d 8836 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 · ((𝑘 + 1) / 𝑦)) = (𝑘 + 1)) |
| 26 | | simprr 531 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∥ (𝑘 + 1)) |
| 27 | 22 | nnzd 9464 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℤ) |
| 28 | 22 | nnne0d 9052 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≠ 0) |
| 29 | 17 | nnzd 9464 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℤ) |
| 30 | | dvdsval2 11972 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ (𝑘 + 1) ∈ ℤ) →
(𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ)) |
| 31 | 27, 28, 29, 30 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ)) |
| 32 | 26, 31 | mpbid 147 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℤ) |
| 33 | 23 | mulid2d 8062 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) = 𝑦) |
| 34 | | elfzle2 10120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ≤ ((𝑘 + 1) − 1)) |
| 35 | 34 | ad2antrl 490 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≤ ((𝑘 + 1) − 1)) |
| 36 | | nncn 9015 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
| 37 | 36 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℂ) |
| 38 | | ax-1cn 7989 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
| 39 | | pncan 8249 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 1) = 𝑘) |
| 40 | 37, 38, 39 | sylancl 413 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) − 1) = 𝑘) |
| 41 | 35, 40 | breqtrd 4060 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≤ 𝑘) |
| 42 | | nnz 9362 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
| 43 | 42 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℤ) |
| 44 | | zleltp1 9398 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑦 ≤ 𝑘 ↔ 𝑦 < (𝑘 + 1))) |
| 45 | 27, 43, 44 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ≤ 𝑘 ↔ 𝑦 < (𝑘 + 1))) |
| 46 | 41, 45 | mpbid 147 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 < (𝑘 + 1)) |
| 47 | 33, 46 | eqbrtrd 4056 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) < (𝑘 + 1)) |
| 48 | | 1red 8058 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 ∈
ℝ) |
| 49 | 17 | nnred 9020 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ) |
| 50 | 22 | nnred 9020 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ) |
| 51 | 22 | nngt0d 9051 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < 𝑦) |
| 52 | | ltmuldiv 8918 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ (𝑘 +
1) ∈ ℝ ∧ (𝑦
∈ ℝ ∧ 0 < 𝑦)) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦))) |
| 53 | 48, 49, 50, 51, 52 | syl112anc 1253 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦))) |
| 54 | 47, 53 | mpbid 147 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < ((𝑘 + 1) / 𝑦)) |
| 55 | | eluz2b1 9692 |
. . . . . . . . . . . 12
⊢ (((𝑘 + 1) / 𝑦) ∈ (ℤ≥‘2)
↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 1 <
((𝑘 + 1) / 𝑦))) |
| 56 | 32, 54, 55 | sylanbrc 417 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈
(ℤ≥‘2)) |
| 57 | | prmind.2 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| 58 | | simplr 528 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑥 ∈ (1...𝑘)𝜑) |
| 59 | | fznn 10181 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑘))) |
| 60 | 43, 59 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑘))) |
| 61 | 22, 41, 60 | mpbir2and 946 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (1...𝑘)) |
| 62 | 57, 58, 61 | rspcdva 2873 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝜒) |
| 63 | | vex 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
| 64 | | prmind.3 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) |
| 65 | 63, 64 | sbcie 3024 |
. . . . . . . . . . . . . 14
⊢
([𝑧 / 𝑥]𝜑 ↔ 𝜃) |
| 66 | | dfsbcq 2991 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → ([𝑧 / 𝑥]𝜑 ↔ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)) |
| 67 | 65, 66 | bitr3id 194 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜃 ↔ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)) |
| 68 | 64 | cbvralv 2729 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
(1...𝑘)𝜑 ↔ ∀𝑧 ∈ (1...𝑘)𝜃) |
| 69 | 58, 68 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑧 ∈ (1...𝑘)𝜃) |
| 70 | 17 | nnrpd 9786 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈
ℝ+) |
| 71 | 22 | nnrpd 9786 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ+) |
| 72 | 70, 71 | rpdivcld 9806 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈
ℝ+) |
| 73 | 72 | rpgt0d 9791 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < ((𝑘 + 1) / 𝑦)) |
| 74 | | elnnz 9353 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 + 1) / 𝑦) ∈ ℕ ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 0 < ((𝑘 + 1) / 𝑦))) |
| 75 | 32, 73, 74 | sylanbrc 417 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℕ) |
| 76 | 17 | nnap0d 9053 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) # 0) |
| 77 | 18, 76 | dividapd 8830 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) = 1) |
| 78 | | eluz2gt1 9693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈
(ℤ≥‘2) → 1 < 𝑦) |
| 79 | 20, 78 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < 𝑦) |
| 80 | 77, 79 | eqbrtrd 4056 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) < 𝑦) |
| 81 | 17 | nngt0d 9051 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < (𝑘 + 1)) |
| 82 | | ltdiv23 8936 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 + 1) ∈ ℝ ∧
((𝑘 + 1) ∈ ℝ
∧ 0 < (𝑘 + 1)) ∧
(𝑦 ∈ ℝ ∧ 0
< 𝑦)) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1))) |
| 83 | 49, 49, 81, 50, 51, 82 | syl122anc 1258 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1))) |
| 84 | 80, 83 | mpbid 147 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) < (𝑘 + 1)) |
| 85 | | zleltp1 9398 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1))) |
| 86 | 32, 43, 85 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1))) |
| 87 | 84, 86 | mpbird 167 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ≤ 𝑘) |
| 88 | | fznn 10181 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℤ → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘))) |
| 89 | 43, 88 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘))) |
| 90 | 75, 87, 89 | mpbir2and 946 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (1...𝑘)) |
| 91 | 67, 69, 90 | rspcdva 2873 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [((𝑘 + 1) / 𝑦) / 𝑥]𝜑) |
| 92 | 62, 91 | jca 306 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝜒 ∧ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)) |
| 93 | 67 | anbi2d 464 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝜒 ∧ 𝜃) ↔ (𝜒 ∧ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑))) |
| 94 | | oveq2 5933 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → (𝑦 · 𝑧) = (𝑦 · ((𝑘 + 1) / 𝑦))) |
| 95 | 94 | sbceq1d 2994 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → ([(𝑦 · 𝑧) / 𝑥]𝜑 ↔ [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)) |
| 96 | 93, 95 | imbi12d 234 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → (((𝜒 ∧ 𝜃) → [(𝑦 · 𝑧) / 𝑥]𝜑) ↔ ((𝜒 ∧ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))) |
| 97 | 96 | imbi2d 230 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝑦 ∈ (ℤ≥‘2)
→ ((𝜒 ∧ 𝜃) → [(𝑦 · 𝑧) / 𝑥]𝜑)) ↔ (𝑦 ∈ (ℤ≥‘2)
→ ((𝜒 ∧
[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))) |
| 98 | | prmind2.8 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈
(ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2))
→ ((𝜒 ∧ 𝜃) → 𝜏)) |
| 99 | 98 | ancoms 268 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈
(ℤ≥‘2) ∧ 𝑦 ∈ (ℤ≥‘2))
→ ((𝜒 ∧ 𝜃) → 𝜏)) |
| 100 | | eluzelz 9627 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈
(ℤ≥‘2) → 𝑦 ∈ ℤ) |
| 101 | 100 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈
(ℤ≥‘2) ∧ 𝑦 ∈ (ℤ≥‘2))
→ 𝑦 ∈
ℤ) |
| 102 | | eluzelz 9627 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈
(ℤ≥‘2) → 𝑧 ∈ ℤ) |
| 103 | 102 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈
(ℤ≥‘2) ∧ 𝑦 ∈ (ℤ≥‘2))
→ 𝑧 ∈
ℤ) |
| 104 | 101, 103 | zmulcld 9471 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈
(ℤ≥‘2) ∧ 𝑦 ∈ (ℤ≥‘2))
→ (𝑦 · 𝑧) ∈
ℤ) |
| 105 | | prmind.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) |
| 106 | 105 | sbcieg 3022 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 · 𝑧) ∈ ℤ → ([(𝑦 · 𝑧) / 𝑥]𝜑 ↔ 𝜏)) |
| 107 | 104, 106 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈
(ℤ≥‘2) ∧ 𝑦 ∈ (ℤ≥‘2))
→ ([(𝑦 ·
𝑧) / 𝑥]𝜑 ↔ 𝜏)) |
| 108 | 99, 107 | sylibrd 169 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈
(ℤ≥‘2) ∧ 𝑦 ∈ (ℤ≥‘2))
→ ((𝜒 ∧ 𝜃) → [(𝑦 · 𝑧) / 𝑥]𝜑)) |
| 109 | 108 | ex 115 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈
(ℤ≥‘2) → (𝑦 ∈ (ℤ≥‘2)
→ ((𝜒 ∧ 𝜃) → [(𝑦 · 𝑧) / 𝑥]𝜑))) |
| 110 | 97, 109 | vtoclga 2830 |
. . . . . . . . . . 11
⊢ (((𝑘 + 1) / 𝑦) ∈ (ℤ≥‘2)
→ (𝑦 ∈
(ℤ≥‘2) → ((𝜒 ∧ [((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))) |
| 111 | 56, 20, 92, 110 | syl3c 63 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑) |
| 112 | 25, 111 | sbceq1dd 2995 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑘 + 1) / 𝑥]𝜑) |
| 113 | 112 | rexlimdvaa 2615 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑)) |
| 114 | | ralnex 2485 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(2...((𝑘 + 1) − 1))
¬ 𝑦 ∥ (𝑘 + 1) ↔ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1)) |
| 115 | | simpl 109 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℕ) |
| 116 | | elnnuz 9655 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
| 117 | 115, 116 | sylib 122 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈
(ℤ≥‘1)) |
| 118 | | eluzp1p1 9644 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘1) → (𝑘 + 1) ∈ (ℤ≥‘(1
+ 1))) |
| 119 | 117, 118 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ≥‘(1
+ 1))) |
| 120 | | df-2 9066 |
. . . . . . . . . . . . 13
⊢ 2 = (1 +
1) |
| 121 | 120 | fveq2i 5564 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
| 122 | 119, 121 | eleqtrrdi 2290 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈
(ℤ≥‘2)) |
| 123 | | isprm3 12311 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 1) ∈ ℙ ↔
((𝑘 + 1) ∈
(ℤ≥‘2) ∧ ∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1))) |
| 124 | 123 | baibr 921 |
. . . . . . . . . . 11
⊢ ((𝑘 + 1) ∈
(ℤ≥‘2) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ)) |
| 125 | 122, 124 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ)) |
| 126 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑥 ∈ (1...𝑘)𝜑) |
| 127 | 57 | cbvralv 2729 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(1...𝑘)𝜑 ↔ ∀𝑦 ∈ (1...𝑘)𝜒) |
| 128 | 126, 127 | sylib 122 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...𝑘)𝜒) |
| 129 | 115 | nncnd 9021 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℂ) |
| 130 | 129, 38, 39 | sylancl 413 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) − 1) = 𝑘) |
| 131 | 130 | oveq2d 5941 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (1...((𝑘 + 1) − 1)) = (1...𝑘)) |
| 132 | 131 | raleqdv 2699 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 ↔ ∀𝑦 ∈ (1...𝑘)𝜒)) |
| 133 | 128, 132 | mpbird 167 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒) |
| 134 | | nfcv 2339 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑘 + 1) |
| 135 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 |
| 136 | | nfsbc1v 3008 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥[(𝑘 + 1) / 𝑥]𝜑 |
| 137 | 135, 136 | nfim 1586 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 → [(𝑘 + 1) / 𝑥]𝜑) |
| 138 | | oveq1 5932 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑘 + 1) → (𝑥 − 1) = ((𝑘 + 1) − 1)) |
| 139 | 138 | oveq2d 5941 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑘 + 1) → (1...(𝑥 − 1)) = (1...((𝑘 + 1) − 1))) |
| 140 | 139 | raleqdv 2699 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑘 + 1) → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒 ↔ ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒)) |
| 141 | | sbceq1a 2999 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑘 + 1) → (𝜑 ↔ [(𝑘 + 1) / 𝑥]𝜑)) |
| 142 | 140, 141 | imbi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑘 + 1) → ((∀𝑦 ∈ (1...(𝑥 − 1))𝜒 → 𝜑) ↔ (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 → [(𝑘 + 1) / 𝑥]𝜑))) |
| 143 | | prmind2.7 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℙ ∧
∀𝑦 ∈
(1...(𝑥 − 1))𝜒) → 𝜑) |
| 144 | 143 | ex 115 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℙ →
(∀𝑦 ∈
(1...(𝑥 − 1))𝜒 → 𝜑)) |
| 145 | 134, 137,
142, 144 | vtoclgaf 2829 |
. . . . . . . . . . 11
⊢ ((𝑘 + 1) ∈ ℙ →
(∀𝑦 ∈
(1...((𝑘 + 1) −
1))𝜒 → [(𝑘 + 1) / 𝑥]𝜑)) |
| 146 | 133, 145 | syl5com 29 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) ∈ ℙ → [(𝑘 + 1) / 𝑥]𝜑)) |
| 147 | 125, 146 | sylbid 150 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑)) |
| 148 | 114, 147 | biimtrrid 153 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑)) |
| 149 | | 2z 9371 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
| 150 | 149 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 2 ∈ ℤ) |
| 151 | 115 | nnzd 9464 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℤ) |
| 152 | 151 | peano2zd 9468 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ ℤ) |
| 153 | | 1zzd 9370 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → 1 ∈ ℤ) |
| 154 | 152, 153 | zsubcld 9470 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) − 1) ∈
ℤ) |
| 155 | 19, 21 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ∈
ℕ) |
| 156 | | dvdsdc 11980 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝑘 + 1) ∈ ℤ) →
DECID 𝑦
∥ (𝑘 +
1)) |
| 157 | 155, 152,
156 | syl2anr 290 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) ∧ 𝑦 ∈ (2...((𝑘 + 1) − 1))) →
DECID 𝑦
∥ (𝑘 +
1)) |
| 158 | 150, 154,
157 | exfzdc 10333 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → DECID ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1)) |
| 159 | | exmiddc 837 |
. . . . . . . . 9
⊢
(DECID ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) ∨ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1))) |
| 160 | 158, 159 | syl 14 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) ∨ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1))) |
| 161 | 113, 148,
160 | mpjaod 719 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧
∀𝑥 ∈ (1...𝑘)𝜑) → [(𝑘 + 1) / 𝑥]𝜑) |
| 162 | 161 | ex 115 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...𝑘)𝜑 → [(𝑘 + 1) / 𝑥]𝜑)) |
| 163 | | ralsnsg 3660 |
. . . . . . 7
⊢ ((𝑘 + 1) ∈ ℕ →
(∀𝑥 ∈ {(𝑘 + 1)}𝜑 ↔ [(𝑘 + 1) / 𝑥]𝜑)) |
| 164 | 16, 163 | syl 14 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈ {(𝑘 + 1)}𝜑 ↔ [(𝑘 + 1) / 𝑥]𝜑)) |
| 165 | 162, 164 | sylibrd 169 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...𝑘)𝜑 → ∀𝑥 ∈ {(𝑘 + 1)}𝜑)) |
| 166 | 165 | ancld 325 |
. . . 4
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...𝑘)𝜑 → (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑))) |
| 167 | | fzsuc 10161 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)})) |
| 168 | 116, 167 | sylbi 121 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)})) |
| 169 | 168 | raleqdv 2699 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...(𝑘 + 1))𝜑 ↔ ∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑)) |
| 170 | | ralunb 3345 |
. . . . 5
⊢
(∀𝑥 ∈
((1...𝑘) ∪ {(𝑘 + 1)})𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)) |
| 171 | 169, 170 | bitrdi 196 |
. . . 4
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...(𝑘 + 1))𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑))) |
| 172 | 166, 171 | sylibrd 169 |
. . 3
⊢ (𝑘 ∈ ℕ →
(∀𝑥 ∈
(1...𝑘)𝜑 → ∀𝑥 ∈ (1...(𝑘 + 1))𝜑)) |
| 173 | 3, 5, 7, 9, 15, 172 | nnind 9023 |
. 2
⊢ (𝐴 ∈ ℕ →
∀𝑥 ∈ (1...𝐴)𝜑) |
| 174 | | elfz1end 10147 |
. . 3
⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) |
| 175 | 174 | biimpi 120 |
. 2
⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (1...𝐴)) |
| 176 | 1, 173, 175 | rspcdva 2873 |
1
⊢ (𝐴 ∈ ℕ → 𝜂) |