ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmind2 GIF version

Theorem prmind2 11801
Description: A variation on prmind 11802 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
prmind.1 (𝑥 = 1 → (𝜑𝜓))
prmind.2 (𝑥 = 𝑦 → (𝜑𝜒))
prmind.3 (𝑥 = 𝑧 → (𝜑𝜃))
prmind.4 (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))
prmind.5 (𝑥 = 𝐴 → (𝜑𝜂))
prmind.6 𝜓
prmind2.7 ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)
prmind2.8 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
prmind2 (𝐴 ∈ ℕ → 𝜂)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑥,𝑧,𝜒   𝜂,𝑥   𝜏,𝑥   𝜃,𝑥   𝑦,𝑧,𝜑
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝜂(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem prmind2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmind.5 . 2 (𝑥 = 𝐴 → (𝜑𝜂))
2 oveq2 5782 . . . 4 (𝑛 = 1 → (1...𝑛) = (1...1))
32raleqdv 2632 . . 3 (𝑛 = 1 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...1)𝜑))
4 oveq2 5782 . . . 4 (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘))
54raleqdv 2632 . . 3 (𝑛 = 𝑘 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝑘)𝜑))
6 oveq2 5782 . . . 4 (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1)))
76raleqdv 2632 . . 3 (𝑛 = (𝑘 + 1) → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...(𝑘 + 1))𝜑))
8 oveq2 5782 . . . 4 (𝑛 = 𝐴 → (1...𝑛) = (1...𝐴))
98raleqdv 2632 . . 3 (𝑛 = 𝐴 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝐴)𝜑))
10 prmind.6 . . . . 5 𝜓
11 elfz1eq 9815 . . . . . 6 (𝑥 ∈ (1...1) → 𝑥 = 1)
12 prmind.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
1311, 12syl 14 . . . . 5 (𝑥 ∈ (1...1) → (𝜑𝜓))
1410, 13mpbiri 167 . . . 4 (𝑥 ∈ (1...1) → 𝜑)
1514rgen 2485 . . 3 𝑥 ∈ (1...1)𝜑
16 peano2nn 8732 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1716ad2antrr 479 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ)
1817nncnd 8734 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℂ)
19 elfzuz 9802 . . . . . . . . . . . . . 14 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ∈ (ℤ‘2))
2019ad2antrl 481 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (ℤ‘2))
21 eluz2nn 9364 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℕ)
2220, 21syl 14 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℕ)
2322nncnd 8734 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℂ)
2422nnap0d 8766 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 # 0)
2518, 23, 24divcanap2d 8552 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 · ((𝑘 + 1) / 𝑦)) = (𝑘 + 1))
26 simprr 521 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∥ (𝑘 + 1))
2722nnzd 9172 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℤ)
2822nnne0d 8765 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≠ 0)
2917nnzd 9172 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℤ)
30 dvdsval2 11496 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ (𝑘 + 1) ∈ ℤ) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ))
3127, 28, 29, 30syl3anc 1216 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ))
3226, 31mpbid 146 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℤ)
3323mulid2d 7784 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) = 𝑦)
34 elfzle2 9808 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ≤ ((𝑘 + 1) − 1))
3534ad2antrl 481 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≤ ((𝑘 + 1) − 1))
36 nncn 8728 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
3736ad2antrr 479 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℂ)
38 ax-1cn 7713 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
39 pncan 7968 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
4037, 38, 39sylancl 409 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) − 1) = 𝑘)
4135, 40breqtrd 3954 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦𝑘)
42 nnz 9073 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4342ad2antrr 479 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℤ)
44 zleltp1 9109 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑦𝑘𝑦 < (𝑘 + 1)))
4527, 43, 44syl2anc 408 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦𝑘𝑦 < (𝑘 + 1)))
4641, 45mpbid 146 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 < (𝑘 + 1))
4733, 46eqbrtrd 3950 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) < (𝑘 + 1))
48 1red 7781 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 ∈ ℝ)
4917nnred 8733 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
5022nnred 8733 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ)
5122nngt0d 8764 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < 𝑦)
52 ltmuldiv 8632 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦)))
5348, 49, 50, 51, 52syl112anc 1220 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦)))
5447, 53mpbid 146 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < ((𝑘 + 1) / 𝑦))
55 eluz2b1 9395 . . . . . . . . . . . 12 (((𝑘 + 1) / 𝑦) ∈ (ℤ‘2) ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 1 < ((𝑘 + 1) / 𝑦)))
5632, 54, 55sylanbrc 413 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (ℤ‘2))
57 prmind.2 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑𝜒))
58 simplr 519 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑥 ∈ (1...𝑘)𝜑)
59 fznn 9869 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑘)))
6043, 59syl 14 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑘)))
6122, 41, 60mpbir2and 928 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (1...𝑘))
6257, 58, 61rspcdva 2794 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝜒)
63 vex 2689 . . . . . . . . . . . . . . 15 𝑧 ∈ V
64 prmind.3 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝜑𝜃))
6563, 64sbcie 2943 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝜑𝜃)
66 dfsbcq 2911 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → ([𝑧 / 𝑥]𝜑[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
6765, 66syl5bbr 193 . . . . . . . . . . . . 13 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜃[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
6864cbvralv 2654 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (1...𝑘)𝜑 ↔ ∀𝑧 ∈ (1...𝑘)𝜃)
6958, 68sylib 121 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑧 ∈ (1...𝑘)𝜃)
7017nnrpd 9482 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ+)
7122nnrpd 9482 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ+)
7270, 71rpdivcld 9501 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℝ+)
7372rpgt0d 9486 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < ((𝑘 + 1) / 𝑦))
74 elnnz 9064 . . . . . . . . . . . . . . 15 (((𝑘 + 1) / 𝑦) ∈ ℕ ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 0 < ((𝑘 + 1) / 𝑦)))
7532, 73, 74sylanbrc 413 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℕ)
7617nnap0d 8766 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) # 0)
7718, 76dividapd 8546 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) = 1)
78 eluz2gt1 9396 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℤ‘2) → 1 < 𝑦)
7920, 78syl 14 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < 𝑦)
8077, 79eqbrtrd 3950 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) < 𝑦)
8117nngt0d 8764 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < (𝑘 + 1))
82 ltdiv23 8650 . . . . . . . . . . . . . . . . 17 (((𝑘 + 1) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8349, 49, 81, 50, 51, 82syl122anc 1225 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8480, 83mpbid 146 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) < (𝑘 + 1))
85 zleltp1 9109 . . . . . . . . . . . . . . . 16 ((((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8632, 43, 85syl2anc 408 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8784, 86mpbird 166 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ≤ 𝑘)
88 fznn 9869 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘)))
8943, 88syl 14 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘)))
9075, 87, 89mpbir2and 928 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (1...𝑘))
9167, 69, 90rspcdva 2794 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)
9262, 91jca 304 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
9367anbi2d 459 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝜒𝜃) ↔ (𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑)))
94 oveq2 5782 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝑦 · 𝑧) = (𝑦 · ((𝑘 + 1) / 𝑦)))
9594sbceq1d 2914 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → ([(𝑦 · 𝑧) / 𝑥]𝜑[(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))
9693, 95imbi12d 233 . . . . . . . . . . . . 13 (𝑧 = ((𝑘 + 1) / 𝑦) → (((𝜒𝜃) → [(𝑦 · 𝑧) / 𝑥]𝜑) ↔ ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))
9796imbi2d 229 . . . . . . . . . . . 12 (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝑦 ∈ (ℤ‘2) → ((𝜒𝜃) → [(𝑦 · 𝑧) / 𝑥]𝜑)) ↔ (𝑦 ∈ (ℤ‘2) → ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))))
98 prmind2.8 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
9998ancoms 266 . . . . . . . . . . . . . 14 ((𝑧 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
100 eluzelz 9335 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
101100adantl 275 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → 𝑦 ∈ ℤ)
102 eluzelz 9335 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
103102adantr 274 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
104101, 103zmulcld 9179 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → (𝑦 · 𝑧) ∈ ℤ)
105 prmind.4 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))
106105sbcieg 2941 . . . . . . . . . . . . . . 15 ((𝑦 · 𝑧) ∈ ℤ → ([(𝑦 · 𝑧) / 𝑥]𝜑𝜏))
107104, 106syl 14 . . . . . . . . . . . . . 14 ((𝑧 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → ([(𝑦 · 𝑧) / 𝑥]𝜑𝜏))
10899, 107sylibrd 168 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℤ‘2) ∧ 𝑦 ∈ (ℤ‘2)) → ((𝜒𝜃) → [(𝑦 · 𝑧) / 𝑥]𝜑))
109108ex 114 . . . . . . . . . . . 12 (𝑧 ∈ (ℤ‘2) → (𝑦 ∈ (ℤ‘2) → ((𝜒𝜃) → [(𝑦 · 𝑧) / 𝑥]𝜑)))
11097, 109vtoclga 2752 . . . . . . . . . . 11 (((𝑘 + 1) / 𝑦) ∈ (ℤ‘2) → (𝑦 ∈ (ℤ‘2) → ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))
11156, 20, 92, 110syl3c 63 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)
11225, 111sbceq1dd 2915 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑘 + 1) / 𝑥]𝜑)
113112rexlimdvaa 2550 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
114 ralnex 2426 . . . . . . . . 9 (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1))
115 simpl 108 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℕ)
116 elnnuz 9362 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
117115, 116sylib 121 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ (ℤ‘1))
118 eluzp1p1 9351 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘1) → (𝑘 + 1) ∈ (ℤ‘(1 + 1)))
119117, 118syl 14 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ‘(1 + 1)))
120 df-2 8779 . . . . . . . . . . . . 13 2 = (1 + 1)
121120fveq2i 5424 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
122119, 121eleqtrrdi 2233 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ‘2))
123 isprm3 11799 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ ℙ ↔ ((𝑘 + 1) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1)))
124123baibr 905 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ‘2) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ))
125122, 124syl 14 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ))
126 simpr 109 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑥 ∈ (1...𝑘)𝜑)
12757cbvralv 2654 . . . . . . . . . . . . 13 (∀𝑥 ∈ (1...𝑘)𝜑 ↔ ∀𝑦 ∈ (1...𝑘)𝜒)
128126, 127sylib 121 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...𝑘)𝜒)
129115nncnd 8734 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℂ)
130129, 38, 39sylancl 409 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) − 1) = 𝑘)
131130oveq2d 5790 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
132131raleqdv 2632 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 ↔ ∀𝑦 ∈ (1...𝑘)𝜒))
133128, 132mpbird 166 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒)
134 nfcv 2281 . . . . . . . . . . . 12 𝑥(𝑘 + 1)
135 nfv 1508 . . . . . . . . . . . . 13 𝑥𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒
136 nfsbc1v 2927 . . . . . . . . . . . . 13 𝑥[(𝑘 + 1) / 𝑥]𝜑
137135, 136nfim 1551 . . . . . . . . . . . 12 𝑥(∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑)
138 oveq1 5781 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝑥 − 1) = ((𝑘 + 1) − 1))
139138oveq2d 5790 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → (1...(𝑥 − 1)) = (1...((𝑘 + 1) − 1)))
140139raleqdv 2632 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒 ↔ ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒))
141 sbceq1a 2918 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (𝜑[(𝑘 + 1) / 𝑥]𝜑))
142140, 141imbi12d 233 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → ((∀𝑦 ∈ (1...(𝑥 − 1))𝜒𝜑) ↔ (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑)))
143 prmind2.7 . . . . . . . . . . . . 13 ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)
144143ex 114 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒𝜑))
145134, 137, 142, 144vtoclgaf 2751 . . . . . . . . . . 11 ((𝑘 + 1) ∈ ℙ → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑))
146133, 145syl5com 29 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) ∈ ℙ → [(𝑘 + 1) / 𝑥]𝜑))
147125, 146sylbid 149 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
148114, 147syl5bir 152 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
149 2z 9082 . . . . . . . . . . 11 2 ∈ ℤ
150149a1i 9 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 2 ∈ ℤ)
151115nnzd 9172 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℤ)
152151peano2zd 9176 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ ℤ)
153 1zzd 9081 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 1 ∈ ℤ)
154152, 153zsubcld 9178 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) − 1) ∈ ℤ)
15519, 21syl 14 . . . . . . . . . . 11 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ∈ ℕ)
156 dvdsdc 11501 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝑘 + 1) ∈ ℤ) → DECID 𝑦 ∥ (𝑘 + 1))
157155, 152, 156syl2anr 288 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ 𝑦 ∈ (2...((𝑘 + 1) − 1))) → DECID 𝑦 ∥ (𝑘 + 1))
158150, 154, 157exfzdc 10017 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → DECID𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1))
159 exmiddc 821 . . . . . . . . 9 (DECID𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) ∨ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1)))
160158, 159syl 14 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) ∨ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1)))
161113, 148, 160mpjaod 707 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → [(𝑘 + 1) / 𝑥]𝜑)
162161ex 114 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑[(𝑘 + 1) / 𝑥]𝜑))
163 ralsnsg 3561 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
16416, 163syl 14 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
165162, 164sylibrd 168 . . . . 5 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → ∀𝑥 ∈ {(𝑘 + 1)}𝜑))
166165ancld 323 . . . 4 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)))
167 fzsuc 9849 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
168116, 167sylbi 120 . . . . . 6 (𝑘 ∈ ℕ → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
169168raleqdv 2632 . . . . 5 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...(𝑘 + 1))𝜑 ↔ ∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑))
170 ralunb 3257 . . . . 5 (∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑))
171169, 170syl6bb 195 . . . 4 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...(𝑘 + 1))𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)))
172166, 171sylibrd 168 . . 3 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → ∀𝑥 ∈ (1...(𝑘 + 1))𝜑))
1733, 5, 7, 9, 15, 172nnind 8736 . 2 (𝐴 ∈ ℕ → ∀𝑥 ∈ (1...𝐴)𝜑)
174 elfz1end 9835 . . 3 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
175174biimpi 119 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ (1...𝐴))
1761, 173, 175rspcdva 2794 1 (𝐴 ∈ ℕ → 𝜂)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wral 2416  wrex 2417  [wsbc 2909  cun 3069  {csn 3527   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  cn 8720  2c2 8771  cz 9054  cuz 9326  ...cfz 9790  cdvds 11493  cprime 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-prm 11789
This theorem is referenced by:  prmind  11802
  Copyright terms: Public domain W3C validator