| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp2i | GIF version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| 3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | 
| Ref | Expression | 
|---|---|
| simp2i | ⊢ 𝜓 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
| 2 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: strleun 12782 rmodislmodlem 13906 rmodislmod 13907 sratsetg 14001 sradsg 14004 lgslem4 15244 lgscllem 15248 lgsdir2lem2 15270 | 
| Copyright terms: Public domain | W3C validator |