| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2i | Unicode version | ||
| Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3simp1i.1 |
|
| Ref | Expression |
|---|---|
| simp2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1i.1 |
. 2
| |
| 2 | simp2 1000 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: strleun 12807 rmodislmodlem 13982 rmodislmod 13983 sratsetg 14077 sradsg 14080 lgslem4 15328 lgscllem 15332 lgsdir2lem2 15354 |
| Copyright terms: Public domain | W3C validator |