ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmodislmod GIF version

Theorem rmodislmod 14323
Description: The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 14261 of a left module, see also islmod 14263. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
rmodislmod.v 𝑉 = (Base‘𝑅)
rmodislmod.a + = (+g𝑅)
rmodislmod.s · = ( ·𝑠𝑅)
rmodislmod.f 𝐹 = (Scalar‘𝑅)
rmodislmod.k 𝐾 = (Base‘𝐹)
rmodislmod.p = (+g𝐹)
rmodislmod.t × = (.r𝐹)
rmodislmod.u 1 = (1r𝐹)
rmodislmod.r (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
rmodislmod.m = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
rmodislmod.l 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
Assertion
Ref Expression
rmodislmod (𝐹 ∈ CRing → 𝐿 ∈ LMod)
Distinct variable groups:   × ,𝑞,𝑟,𝑤,𝑥   × ,𝑠,𝑣   · ,𝑞,𝑟,𝑤,𝑥   · ,𝑠,𝑣   𝐾,𝑞,𝑟,𝑥   𝐾,𝑠,𝑣   𝑉,𝑞,𝑟,𝑤,𝑥   𝑉,𝑠,𝑣   𝐹,𝑠,𝑣   1 ,𝑠,𝑣   1 ,𝑞,𝑟,𝑤,𝑥   + ,𝑞,𝑟,𝑤,𝑥   + ,𝑠,𝑣   ,𝑞,𝑟,𝑤,𝑥   ,𝑠,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)   𝐹(𝑥,𝑤,𝑟,𝑞)   (𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)   𝐾(𝑤)   𝐿(𝑥,𝑤,𝑣,𝑠,𝑟,𝑞)

Proof of Theorem rmodislmod
Dummy variables 𝑎 𝑏 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rmodislmod.v . . . . 5 𝑉 = (Base‘𝑅)
2 rmodislmod.r . . . . . . 7 (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)))
32simp1i 1030 . . . . . 6 𝑅 ∈ Grp
4 rmodislmod.k . . . . . . . 8 𝐾 = (Base‘𝐹)
5 basfn 13099 . . . . . . . . 9 Base Fn V
62simp2i 1031 . . . . . . . . . 10 𝐹 ∈ Ring
76elexi 2812 . . . . . . . . 9 𝐹 ∈ V
8 funfvex 5646 . . . . . . . . . 10 ((Fun Base ∧ 𝐹 ∈ dom Base) → (Base‘𝐹) ∈ V)
98funfni 5423 . . . . . . . . 9 ((Base Fn V ∧ 𝐹 ∈ V) → (Base‘𝐹) ∈ V)
105, 7, 9mp2an 426 . . . . . . . 8 (Base‘𝐹) ∈ V
114, 10eqeltri 2302 . . . . . . 7 𝐾 ∈ V
123elexi 2812 . . . . . . . . 9 𝑅 ∈ V
13 funfvex 5646 . . . . . . . . . 10 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1413funfni 5423 . . . . . . . . 9 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
155, 12, 14mp2an 426 . . . . . . . 8 (Base‘𝑅) ∈ V
161, 15eqeltri 2302 . . . . . . 7 𝑉 ∈ V
17 rmodislmod.m . . . . . . . 8 = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠))
1817mpoexg 6363 . . . . . . 7 ((𝐾 ∈ V ∧ 𝑉 ∈ V) → ∈ V)
1911, 16, 18mp2an 426 . . . . . 6 ∈ V
20 baseslid 13098 . . . . . . 7 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
21 vscandxnbasendx 13200 . . . . . . . 8 ( ·𝑠 ‘ndx) ≠ (Base‘ndx)
2221necomi 2485 . . . . . . 7 (Base‘ndx) ≠ ( ·𝑠 ‘ndx)
23 vscaslid 13204 . . . . . . . 8 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
2423simpri 113 . . . . . . 7 ( ·𝑠 ‘ndx) ∈ ℕ
2520, 22, 24setsslnid 13092 . . . . . 6 ((𝑅 ∈ Grp ∧ ∈ V) → (Base‘𝑅) = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)))
263, 19, 25mp2an 426 . . . . 5 (Base‘𝑅) = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
271, 26eqtri 2250 . . . 4 𝑉 = (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
28 rmodislmod.l . . . . . 6 𝐿 = (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)
2928eqcomi 2233 . . . . 5 (𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩) = 𝐿
3029fveq2i 5632 . . . 4 (Base‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)) = (Base‘𝐿)
3127, 30eqtri 2250 . . 3 𝑉 = (Base‘𝐿)
3231a1i 9 . 2 (𝐹 ∈ CRing → 𝑉 = (Base‘𝐿))
33 plusgslid 13153 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
34 vscandxnplusgndx 13201 . . . . . . 7 ( ·𝑠 ‘ndx) ≠ (+g‘ndx)
3534necomi 2485 . . . . . 6 (+g‘ndx) ≠ ( ·𝑠 ‘ndx)
3633, 35, 24setsslnid 13092 . . . . 5 ((𝑅 ∈ Grp ∧ ∈ V) → (+g𝑅) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)))
373, 19, 36mp2an 426 . . . 4 (+g𝑅) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
38 rmodislmod.a . . . 4 + = (+g𝑅)
3928fveq2i 5632 . . . 4 (+g𝐿) = (+g‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
4037, 38, 393eqtr4i 2260 . . 3 + = (+g𝐿)
4140a1i 9 . 2 (𝐹 ∈ CRing → + = (+g𝐿))
42 scaslid 13194 . . . . . 6 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
43 vscandxnscandx 13203 . . . . . . 7 ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx)
4443necomi 2485 . . . . . 6 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
4542, 44, 24setsslnid 13092 . . . . 5 ((𝑅 ∈ Grp ∧ ∈ V) → (Scalar‘𝑅) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)))
463, 19, 45mp2an 426 . . . 4 (Scalar‘𝑅) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
47 rmodislmod.f . . . 4 𝐹 = (Scalar‘𝑅)
4828fveq2i 5632 . . . 4 (Scalar‘𝐿) = (Scalar‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
4946, 47, 483eqtr4i 2260 . . 3 𝐹 = (Scalar‘𝐿)
5049a1i 9 . 2 (𝐹 ∈ CRing → 𝐹 = (Scalar‘𝐿))
5123setsslid 13091 . . . . 5 ((𝑅 ∈ Grp ∧ ∈ V) → = ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)))
523, 19, 51mp2an 426 . . . 4 = ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩))
5329fveq2i 5632 . . . 4 ( ·𝑠 ‘(𝑅 sSet ⟨( ·𝑠 ‘ndx), ⟩)) = ( ·𝑠𝐿)
5452, 53eqtri 2250 . . 3 = ( ·𝑠𝐿)
5554a1i 9 . 2 (𝐹 ∈ CRing → = ( ·𝑠𝐿))
564a1i 9 . 2 (𝐹 ∈ CRing → 𝐾 = (Base‘𝐹))
57 rmodislmod.p . . 3 = (+g𝐹)
5857a1i 9 . 2 (𝐹 ∈ CRing → = (+g𝐹))
59 rmodislmod.t . . 3 × = (.r𝐹)
6059a1i 9 . 2 (𝐹 ∈ CRing → × = (.r𝐹))
61 rmodislmod.u . . 3 1 = (1r𝐹)
6261a1i 9 . 2 (𝐹 ∈ CRing → 1 = (1r𝐹))
63 crngring 13979 . 2 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
641eqcomi 2233 . . . . . 6 (Base‘𝑅) = 𝑉
6564, 31eqtri 2250 . . . . 5 (Base‘𝑅) = (Base‘𝐿)
6637, 39eqtr4i 2253 . . . . 5 (+g𝑅) = (+g𝐿)
6765, 66grpprop 13559 . . . 4 (𝑅 ∈ Grp ↔ 𝐿 ∈ Grp)
683, 67mpbi 145 . . 3 𝐿 ∈ Grp
6968a1i 9 . 2 (𝐹 ∈ CRing → 𝐿 ∈ Grp)
7017a1i 9 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
71 oveq12 6016 . . . . . 6 ((𝑣 = 𝑏𝑠 = 𝑎) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
7271ancoms 268 . . . . 5 ((𝑠 = 𝑎𝑣 = 𝑏) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
7372adantl 277 . . . 4 (((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑏)) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
74 simp2 1022 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → 𝑎𝐾)
75 simp3 1023 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → 𝑏𝑉)
76 vex 2802 . . . . . 6 𝑏 ∈ V
77 rmodislmod.s . . . . . . 7 · = ( ·𝑠𝑅)
7823slotex 13067 . . . . . . . 8 (𝑅 ∈ Grp → ( ·𝑠𝑅) ∈ V)
793, 78ax-mp 5 . . . . . . 7 ( ·𝑠𝑅) ∈ V
8077, 79eqeltri 2302 . . . . . 6 · ∈ V
81 vex 2802 . . . . . 6 𝑎 ∈ V
82 ovexg 6041 . . . . . 6 ((𝑏 ∈ V ∧ · ∈ V ∧ 𝑎 ∈ V) → (𝑏 · 𝑎) ∈ V)
8376, 80, 81, 82mp3an 1371 . . . . 5 (𝑏 · 𝑎) ∈ V
8483a1i 9 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ V)
8570, 73, 74, 75, 84ovmpod 6138 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑎 𝑏) = (𝑏 · 𝑎))
86 simpl1 1024 . . . . . . . 8 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 𝑟) ∈ 𝑉)
87862ralimi 2594 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
88872ralimi 2594 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
894, 61ringidcl 13991 . . . . . . . . . 10 (𝐹 ∈ Ring → 1𝐾)
90 elex2 2816 . . . . . . . . . 10 ( 1𝐾 → ∃𝑗 𝑗𝐾)
9189, 90syl 14 . . . . . . . . 9 (𝐹 ∈ Ring → ∃𝑗 𝑗𝐾)
926, 91ax-mp 5 . . . . . . . 8 𝑗 𝑗𝐾
93 r19.3rmv 3582 . . . . . . . 8 (∃𝑗 𝑗𝐾 → (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
9492, 93ax-mp 5 . . . . . . 7 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
9594biimpri 133 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
96 ralcom 2694 . . . . . . 7 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
97 eqid 2229 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
981, 97grpidcl 13570 . . . . . . . . . . . 12 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝑉)
993, 98ax-mp 5 . . . . . . . . . . 11 (0g𝑅) ∈ 𝑉
100 elex2 2816 . . . . . . . . . . 11 ((0g𝑅) ∈ 𝑉 → ∃𝑗 𝑗𝑉)
10199, 100ax-mp 5 . . . . . . . . . 10 𝑗 𝑗𝑉
102 r19.3rmv 3582 . . . . . . . . . 10 (∃𝑗 𝑗𝑉 → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉))
103101, 102ax-mp 5 . . . . . . . . 9 (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 ↔ ∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
104103biimpri 133 . . . . . . . 8 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉)
105 oveq2 6015 . . . . . . . . . . 11 (𝑟 = 𝑎 → (𝑤 · 𝑟) = (𝑤 · 𝑎))
106105eleq1d 2298 . . . . . . . . . 10 (𝑟 = 𝑎 → ((𝑤 · 𝑟) ∈ 𝑉 ↔ (𝑤 · 𝑎) ∈ 𝑉))
107 oveq1 6014 . . . . . . . . . . 11 (𝑤 = 𝑏 → (𝑤 · 𝑎) = (𝑏 · 𝑎))
108107eleq1d 2298 . . . . . . . . . 10 (𝑤 = 𝑏 → ((𝑤 · 𝑎) ∈ 𝑉 ↔ (𝑏 · 𝑎) ∈ 𝑉))
109106, 108rspc2v 2920 . . . . . . . . 9 ((𝑎𝐾𝑏𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑏 · 𝑎) ∈ 𝑉))
1101093adant1 1039 . . . . . . . 8 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (∀𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → (𝑏 · 𝑎) ∈ 𝑉))
111104, 110syl5com 29 . . . . . . 7 (∀𝑥𝑉𝑟𝐾𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
11296, 111sylbi 121 . . . . . 6 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 𝑟) ∈ 𝑉 → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
11388, 95, 1123syl 17 . . . . 5 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
1141133ad2ant3 1044 . . . 4 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉))
1152, 114ax-mp 5 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑏 · 𝑎) ∈ 𝑉)
11685, 115eqeltrd 2306 . 2 ((𝐹 ∈ CRing ∧ 𝑎𝐾𝑏𝑉) → (𝑎 𝑏) ∈ 𝑉)
11717a1i 9 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
118 oveq12 6016 . . . . . . . 8 ((𝑣 = (𝑏 + 𝑐) ∧ 𝑠 = 𝑎) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
119118ancoms 268 . . . . . . 7 ((𝑠 = 𝑎𝑣 = (𝑏 + 𝑐)) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
120119adantl 277 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = (𝑏 + 𝑐))) → (𝑣 · 𝑠) = ((𝑏 + 𝑐) · 𝑎))
121 simp1 1021 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑎𝐾)
1221, 38grpcl 13549 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
1233, 122mp3an1 1358 . . . . . . 7 ((𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
1241233adant1 1039 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑏 + 𝑐) ∈ 𝑉)
12533slotex 13067 . . . . . . . . . . 11 (𝑅 ∈ Grp → (+g𝑅) ∈ V)
1263, 125ax-mp 5 . . . . . . . . . 10 (+g𝑅) ∈ V
12738, 126eqeltri 2302 . . . . . . . . 9 + ∈ V
128 vex 2802 . . . . . . . . 9 𝑐 ∈ V
129 ovexg 6041 . . . . . . . . 9 ((𝑏 ∈ V ∧ + ∈ V ∧ 𝑐 ∈ V) → (𝑏 + 𝑐) ∈ V)
13076, 127, 128, 129mp3an 1371 . . . . . . . 8 (𝑏 + 𝑐) ∈ V
131 ovexg 6041 . . . . . . . 8 (((𝑏 + 𝑐) ∈ V ∧ · ∈ V ∧ 𝑎 ∈ V) → ((𝑏 + 𝑐) · 𝑎) ∈ V)
132130, 80, 81, 131mp3an 1371 . . . . . . 7 ((𝑏 + 𝑐) · 𝑎) ∈ V
133132a1i 9 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) ∈ V)
134117, 120, 121, 124, 133ovmpod 6138 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 + 𝑐) · 𝑎))
135 simpl2 1025 . . . . . . . . . 10 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
1361352ralimi 2594 . . . . . . . . 9 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
1371362ralimi 2594 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
138 r19.3rmv 3582 . . . . . . . . . . 11 (∃𝑗 𝑗𝐾 → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ↔ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟))))
13992, 138ax-mp 5 . . . . . . . . . 10 (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ↔ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
140139biimpri 133 . . . . . . . . 9 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)))
141 oveq2 6015 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 + 𝑥) · 𝑟) = ((𝑤 + 𝑥) · 𝑎))
142 oveq2 6015 . . . . . . . . . . . . 13 (𝑟 = 𝑎 → (𝑥 · 𝑟) = (𝑥 · 𝑎))
143105, 142oveq12d 6025 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ((𝑤 · 𝑟) + (𝑥 · 𝑟)) = ((𝑤 · 𝑎) + (𝑥 · 𝑎)))
144141, 143eqeq12d 2244 . . . . . . . . . . 11 (𝑟 = 𝑎 → (((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ↔ ((𝑤 + 𝑥) · 𝑎) = ((𝑤 · 𝑎) + (𝑥 · 𝑎))))
145 oveq2 6015 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → (𝑤 + 𝑥) = (𝑤 + 𝑐))
146145oveq1d 6022 . . . . . . . . . . . 12 (𝑥 = 𝑐 → ((𝑤 + 𝑥) · 𝑎) = ((𝑤 + 𝑐) · 𝑎))
147 oveq1 6014 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → (𝑥 · 𝑎) = (𝑐 · 𝑎))
148147oveq2d 6023 . . . . . . . . . . . 12 (𝑥 = 𝑐 → ((𝑤 · 𝑎) + (𝑥 · 𝑎)) = ((𝑤 · 𝑎) + (𝑐 · 𝑎)))
149146, 148eqeq12d 2244 . . . . . . . . . . 11 (𝑥 = 𝑐 → (((𝑤 + 𝑥) · 𝑎) = ((𝑤 · 𝑎) + (𝑥 · 𝑎)) ↔ ((𝑤 + 𝑐) · 𝑎) = ((𝑤 · 𝑎) + (𝑐 · 𝑎))))
150 oveq1 6014 . . . . . . . . . . . . 13 (𝑤 = 𝑏 → (𝑤 + 𝑐) = (𝑏 + 𝑐))
151150oveq1d 6022 . . . . . . . . . . . 12 (𝑤 = 𝑏 → ((𝑤 + 𝑐) · 𝑎) = ((𝑏 + 𝑐) · 𝑎))
152107oveq1d 6022 . . . . . . . . . . . 12 (𝑤 = 𝑏 → ((𝑤 · 𝑎) + (𝑐 · 𝑎)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
153151, 152eqeq12d 2244 . . . . . . . . . . 11 (𝑤 = 𝑏 → (((𝑤 + 𝑐) · 𝑎) = ((𝑤 · 𝑎) + (𝑐 · 𝑎)) ↔ ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
154144, 149, 153rspc3v 2923 . . . . . . . . . 10 ((𝑎𝐾𝑐𝑉𝑏𝑉) → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1551543com23 1233 . . . . . . . . 9 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (∀𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
156140, 155syl5com 29 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
157137, 156syl 14 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1581573ad2ant3 1044 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎))))
1592, 158ax-mp 5 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑏 + 𝑐) · 𝑎) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
160134, 159eqtrd 2262 . . . 4 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
161160adantl 277 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → (𝑎 (𝑏 + 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
16272adantl 277 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑏)) → (𝑣 · 𝑠) = (𝑏 · 𝑎))
163 simp2 1022 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑏𝑉)
16483a1i 9 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑏 · 𝑎) ∈ V)
165117, 162, 121, 163, 164ovmpod 6138 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 𝑏) = (𝑏 · 𝑎))
166 oveq12 6016 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑎) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
167166ancoms 268 . . . . . . 7 ((𝑠 = 𝑎𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
168167adantl 277 . . . . . 6 (((𝑎𝐾𝑏𝑉𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
169 simp3 1023 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → 𝑐𝑉)
170 ovexg 6041 . . . . . . . 8 ((𝑐 ∈ V ∧ · ∈ V ∧ 𝑎 ∈ V) → (𝑐 · 𝑎) ∈ V)
171128, 80, 81, 170mp3an 1371 . . . . . . 7 (𝑐 · 𝑎) ∈ V
172171a1i 9 . . . . . 6 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑐 · 𝑎) ∈ V)
173117, 168, 121, 169, 172ovmpod 6138 . . . . 5 ((𝑎𝐾𝑏𝑉𝑐𝑉) → (𝑎 𝑐) = (𝑐 · 𝑎))
174165, 173oveq12d 6025 . . . 4 ((𝑎𝐾𝑏𝑉𝑐𝑉) → ((𝑎 𝑏) + (𝑎 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
175174adantl 277 . . 3 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → ((𝑎 𝑏) + (𝑎 𝑐)) = ((𝑏 · 𝑎) + (𝑐 · 𝑎)))
176161, 175eqtr4d 2265 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝑉𝑐𝑉)) → (𝑎 (𝑏 + 𝑐)) = ((𝑎 𝑏) + (𝑎 𝑐)))
177 simpl3 1026 . . . . . . . . 9 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
1781772ralimi 2594 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
1791782ralimi 2594 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
180 ralrot3 2696 . . . . . . . 8 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ ∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
181 r19.3rmv 3582 . . . . . . . . . . 11 (∃𝑗 𝑗𝑉 → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ ∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))))
182101, 181ax-mp 5 . . . . . . . . . 10 (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ ∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
183182biimpri 133 . . . . . . . . 9 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)))
184 oveq1 6014 . . . . . . . . . . . 12 (𝑞 = 𝑎 → (𝑞 𝑟) = (𝑎 𝑟))
185184oveq2d 6023 . . . . . . . . . . 11 (𝑞 = 𝑎 → (𝑤 · (𝑞 𝑟)) = (𝑤 · (𝑎 𝑟)))
186 oveq2 6015 . . . . . . . . . . . 12 (𝑞 = 𝑎 → (𝑤 · 𝑞) = (𝑤 · 𝑎))
187186oveq1d 6022 . . . . . . . . . . 11 (𝑞 = 𝑎 → ((𝑤 · 𝑞) + (𝑤 · 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟)))
188185, 187eqeq12d 2244 . . . . . . . . . 10 (𝑞 = 𝑎 → ((𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) ↔ (𝑤 · (𝑎 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟))))
189 oveq2 6015 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝑎 𝑟) = (𝑎 𝑏))
190189oveq2d 6023 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝑤 · (𝑎 𝑟)) = (𝑤 · (𝑎 𝑏)))
191 oveq2 6015 . . . . . . . . . . . 12 (𝑟 = 𝑏 → (𝑤 · 𝑟) = (𝑤 · 𝑏))
192191oveq2d 6023 . . . . . . . . . . 11 (𝑟 = 𝑏 → ((𝑤 · 𝑎) + (𝑤 · 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏)))
193190, 192eqeq12d 2244 . . . . . . . . . 10 (𝑟 = 𝑏 → ((𝑤 · (𝑎 𝑟)) = ((𝑤 · 𝑎) + (𝑤 · 𝑟)) ↔ (𝑤 · (𝑎 𝑏)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏))))
194 oveq1 6014 . . . . . . . . . . 11 (𝑤 = 𝑐 → (𝑤 · (𝑎 𝑏)) = (𝑐 · (𝑎 𝑏)))
195 oveq1 6014 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (𝑤 · 𝑎) = (𝑐 · 𝑎))
196 oveq1 6014 . . . . . . . . . . . 12 (𝑤 = 𝑐 → (𝑤 · 𝑏) = (𝑐 · 𝑏))
197195, 196oveq12d 6025 . . . . . . . . . . 11 (𝑤 = 𝑐 → ((𝑤 · 𝑎) + (𝑤 · 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
198194, 197eqeq12d 2244 . . . . . . . . . 10 (𝑤 = 𝑐 → ((𝑤 · (𝑎 𝑏)) = ((𝑤 · 𝑎) + (𝑤 · 𝑏)) ↔ (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
199188, 193, 198rspc3v 2923 . . . . . . . . 9 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (∀𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
200183, 199syl5com 29 . . . . . . . 8 (∀𝑥𝑉𝑞𝐾𝑟𝐾𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
201180, 200sylbi 121 . . . . . . 7 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
202179, 201syl 14 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
2032023ad2ant3 1044 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏))))
2042, 203ax-mp 5 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
20517a1i 9 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
206 oveq12 6016 . . . . . . 7 ((𝑣 = 𝑐𝑠 = (𝑎 𝑏)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
207206ancoms 268 . . . . . 6 ((𝑠 = (𝑎 𝑏) ∧ 𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
208207adantl 277 . . . . 5 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = (𝑎 𝑏) ∧ 𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · (𝑎 𝑏)))
209 ringgrp 13972 . . . . . . . . 9 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2104, 57grpcl 13549 . . . . . . . . . 10 ((𝐹 ∈ Grp ∧ 𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾)
2112103expib 1230 . . . . . . . . 9 (𝐹 ∈ Grp → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
212209, 211syl 14 . . . . . . . 8 (𝐹 ∈ Ring → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
2132123ad2ant2 1043 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾))
2142, 213ax-mp 5 . . . . . 6 ((𝑎𝐾𝑏𝐾) → (𝑎 𝑏) ∈ 𝐾)
2152143adant3 1041 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 𝑏) ∈ 𝐾)
216 simp3 1023 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑐𝑉)
21733slotex 13067 . . . . . . . . . 10 (𝐹 ∈ Ring → (+g𝐹) ∈ V)
2186, 217ax-mp 5 . . . . . . . . 9 (+g𝐹) ∈ V
21957, 218eqeltri 2302 . . . . . . . 8 ∈ V
220 ovexg 6041 . . . . . . . 8 ((𝑎 ∈ V ∧ ∈ V ∧ 𝑏 ∈ V) → (𝑎 𝑏) ∈ V)
22181, 219, 76, 220mp3an 1371 . . . . . . 7 (𝑎 𝑏) ∈ V
222 ovexg 6041 . . . . . . 7 ((𝑐 ∈ V ∧ · ∈ V ∧ (𝑎 𝑏) ∈ V) → (𝑐 · (𝑎 𝑏)) ∈ V)
223128, 80, 221, 222mp3an 1371 . . . . . 6 (𝑐 · (𝑎 𝑏)) ∈ V
224223a1i 9 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · (𝑎 𝑏)) ∈ V)
225205, 208, 215, 216, 224ovmpod 6138 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑏) 𝑐) = (𝑐 · (𝑎 𝑏)))
226167adantl 277 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑎𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑎))
227 simp1 1021 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑎𝐾)
228171a1i 9 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑎) ∈ V)
229205, 226, 227, 216, 228ovmpod 6138 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑎 𝑐) = (𝑐 · 𝑎))
230 oveq12 6016 . . . . . . . 8 ((𝑣 = 𝑐𝑠 = 𝑏) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
231230ancoms 268 . . . . . . 7 ((𝑠 = 𝑏𝑣 = 𝑐) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
232231adantl 277 . . . . . 6 (((𝑎𝐾𝑏𝐾𝑐𝑉) ∧ (𝑠 = 𝑏𝑣 = 𝑐)) → (𝑣 · 𝑠) = (𝑐 · 𝑏))
233 simp2 1022 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → 𝑏𝐾)
234 ovexg 6041 . . . . . . . 8 ((𝑐 ∈ V ∧ · ∈ V ∧ 𝑏 ∈ V) → (𝑐 · 𝑏) ∈ V)
235128, 80, 76, 234mp3an 1371 . . . . . . 7 (𝑐 · 𝑏) ∈ V
236235a1i 9 . . . . . 6 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑐 · 𝑏) ∈ V)
237205, 232, 233, 216, 236ovmpod 6138 . . . . 5 ((𝑎𝐾𝑏𝐾𝑐𝑉) → (𝑏 𝑐) = (𝑐 · 𝑏))
238229, 237oveq12d 6025 . . . 4 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑐) + (𝑏 𝑐)) = ((𝑐 · 𝑎) + (𝑐 · 𝑏)))
239204, 225, 2383eqtr4d 2272 . . 3 ((𝑎𝐾𝑏𝐾𝑐𝑉) → ((𝑎 𝑏) 𝑐) = ((𝑎 𝑐) + (𝑏 𝑐)))
240239adantl 277 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 𝑏) 𝑐) = ((𝑎 𝑐) + (𝑏 𝑐)))
2411, 38, 77, 47, 4, 57, 59, 61, 2, 17, 28rmodislmodlem 14322 . 2 ((𝐹 ∈ CRing ∧ (𝑎𝐾𝑏𝐾𝑐𝑉)) → ((𝑎 × 𝑏) 𝑐) = (𝑎 (𝑏 𝑐)))
24217a1i 9 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → = (𝑠𝐾, 𝑣𝑉 ↦ (𝑣 · 𝑠)))
243 oveq12 6016 . . . . . 6 ((𝑣 = 𝑎𝑠 = 1 ) → (𝑣 · 𝑠) = (𝑎 · 1 ))
244243ancoms 268 . . . . 5 ((𝑠 = 1𝑣 = 𝑎) → (𝑣 · 𝑠) = (𝑎 · 1 ))
245244adantl 277 . . . 4 (((𝐹 ∈ CRing ∧ 𝑎𝑉) ∧ (𝑠 = 1𝑣 = 𝑎)) → (𝑣 · 𝑠) = (𝑎 · 1 ))
24663, 89syl 14 . . . . 5 (𝐹 ∈ CRing → 1𝐾)
247246adantr 276 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → 1𝐾)
248 simpr 110 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → 𝑎𝑉)
2496, 89ax-mp 5 . . . . . 6 1𝐾
250 ovexg 6041 . . . . . 6 ((𝑎 ∈ V ∧ · ∈ V ∧ 1𝐾) → (𝑎 · 1 ) ∈ V)
25181, 80, 249, 250mp3an 1371 . . . . 5 (𝑎 · 1 ) ∈ V
252251a1i 9 . . . 4 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) ∈ V)
253242, 245, 247, 248, 252ovmpod 6138 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → ( 1 𝑎) = (𝑎 · 1 ))
254 simprr 531 . . . . . . . 8 ((((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → (𝑤 · 1 ) = 𝑤)
2552542ralimi 2594 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
2562552ralimi 2594 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
257 r19.3rmv 3582 . . . . . . . 8 (∃𝑗 𝑗𝐾 → (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 ↔ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
25892, 257ax-mp 5 . . . . . . 7 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 ↔ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
259258biimpri 133 . . . . . 6 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
260 r19.3rmv 3582 . . . . . . . 8 (∃𝑗 𝑗𝐾 → (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 ↔ ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
26192, 260ax-mp 5 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 ↔ ∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
262 r19.3rmv 3582 . . . . . . . . . 10 (∃𝑗 𝑗𝑉 → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 ↔ ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤))
263101, 262ax-mp 5 . . . . . . . . 9 (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 ↔ ∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤)
264263biimpri 133 . . . . . . . 8 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ∀𝑤𝑉 (𝑤 · 1 ) = 𝑤)
265 oveq1 6014 . . . . . . . . . . 11 (𝑤 = 𝑎 → (𝑤 · 1 ) = (𝑎 · 1 ))
266 id 19 . . . . . . . . . . 11 (𝑤 = 𝑎𝑤 = 𝑎)
267265, 266eqeq12d 2244 . . . . . . . . . 10 (𝑤 = 𝑎 → ((𝑤 · 1 ) = 𝑤 ↔ (𝑎 · 1 ) = 𝑎))
268267rspcv 2903 . . . . . . . . 9 (𝑎𝑉 → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 → (𝑎 · 1 ) = 𝑎))
269268adantl 277 . . . . . . . 8 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (∀𝑤𝑉 (𝑤 · 1 ) = 𝑤 → (𝑎 · 1 ) = 𝑎))
270264, 269syl5com 29 . . . . . . 7 (∀𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
271261, 270sylbir 135 . . . . . 6 (∀𝑟𝐾𝑥𝑉𝑤𝑉 (𝑤 · 1 ) = 𝑤 → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
272256, 259, 2713syl 17 . . . . 5 (∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤)) → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
2732723ad2ant3 1044 . . . 4 ((𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞𝐾𝑟𝐾𝑥𝑉𝑤𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) → ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎))
2742, 273ax-mp 5 . . 3 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → (𝑎 · 1 ) = 𝑎)
275253, 274eqtrd 2262 . 2 ((𝐹 ∈ CRing ∧ 𝑎𝑉) → ( 1 𝑎) = 𝑎)
27632, 41, 50, 55, 56, 58, 60, 62, 63, 69, 116, 176, 240, 241, 275islmodd 14265 1 (𝐹 ∈ CRing → 𝐿 ∈ LMod)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  Vcvv 2799  cop 3669   Fn wfn 5313  cfv 5318  (class class class)co 6007  cmpo 6009  cn 9118  ndxcnx 13037   sSet csts 13038  Slot cslot 13039  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Scalarcsca 13121   ·𝑠 cvsca 13122  0gc0g 13297  Grpcgrp 13541  1rcur 13930  Ringcrg 13967  CRingccrg 13968  LModclmod 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-cmn 13831  df-mgp 13892  df-ur 13931  df-ring 13969  df-cring 13970  df-lmod 14261
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator