Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lgslem4 | GIF version |
Description: Lemma for lgsfcl2 13701. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.) |
Ref | Expression |
---|---|
lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
Ref | Expression |
---|---|
lgslem4 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3249 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
2 | 1 | adantl 275 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ) |
3 | simpl 108 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ) | |
4 | oddprm 12213 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
5 | 4 | adantl 275 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ) |
6 | prmdvdsexp 12102 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃 ∥ 𝐴)) | |
7 | 2, 3, 5, 6 | syl3anc 1233 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃 ∥ 𝐴)) |
8 | 7 | biimpar 295 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → 𝑃 ∥ (𝐴↑((𝑃 − 1) / 2))) |
9 | prmgt1 12086 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
10 | 1, 9 | syl 14 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃) |
11 | 10 | ad2antlr 486 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → 1 < 𝑃) |
12 | p1modz1 11756 | . . . . 5 ⊢ ((𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ∧ 1 < 𝑃) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1) | |
13 | 8, 11, 12 | syl2anc 409 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1) |
14 | 13 | oveq1d 5868 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (1 − 1)) |
15 | 1m1e0 8947 | . . . 4 ⊢ (1 − 1) = 0 | |
16 | lgslem2.z | . . . . . 6 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
17 | 16 | lgslem2 13696 | . . . . 5 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
18 | 17 | simp2i 1002 | . . . 4 ⊢ 0 ∈ 𝑍 |
19 | 15, 18 | eqeltri 2243 | . . 3 ⊢ (1 − 1) ∈ 𝑍 |
20 | 14, 19 | eqeltrdi 2261 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
21 | lgslem1 13695 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2}) | |
22 | elpri 3606 | . . . 4 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)) | |
23 | oveq1 5860 | . . . . . 6 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (0 − 1)) | |
24 | df-neg 8093 | . . . . . . 7 ⊢ -1 = (0 − 1) | |
25 | 17 | simp1i 1001 | . . . . . . 7 ⊢ -1 ∈ 𝑍 |
26 | 24, 25 | eqeltrri 2244 | . . . . . 6 ⊢ (0 − 1) ∈ 𝑍 |
27 | 23, 26 | eqeltrdi 2261 | . . . . 5 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
28 | oveq1 5860 | . . . . . 6 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (2 − 1)) | |
29 | 2m1e1 8996 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
30 | 17 | simp3i 1003 | . . . . . . 7 ⊢ 1 ∈ 𝑍 |
31 | 29, 30 | eqeltri 2243 | . . . . . 6 ⊢ (2 − 1) ∈ 𝑍 |
32 | 28, 31 | eqeltrdi 2261 | . . . . 5 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
33 | 27, 32 | jaoi 711 | . . . 4 ⊢ (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
34 | 21, 22, 33 | 3syl 17 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
35 | 34 | 3expa 1198 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
36 | prmnn 12064 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
37 | 1, 36 | syl 14 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ) |
38 | 37 | adantl 275 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ) |
39 | dvdsdc 11760 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → DECID 𝑃 ∥ 𝐴) | |
40 | 38, 3, 39 | syl2anc 409 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → DECID 𝑃 ∥ 𝐴) |
41 | exmiddc 831 | . . 3 ⊢ (DECID 𝑃 ∥ 𝐴 → (𝑃 ∥ 𝐴 ∨ ¬ 𝑃 ∥ 𝐴)) | |
42 | 40, 41 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ 𝐴 ∨ ¬ 𝑃 ∥ 𝐴)) |
43 | 20, 35, 42 | mpjaodan 793 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 DECID wdc 829 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 {crab 2452 ∖ cdif 3118 {csn 3583 {cpr 3584 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 − cmin 8090 -cneg 8091 / cdiv 8589 ℕcn 8878 2c2 8929 ℤcz 9212 mod cmo 10278 ↑cexp 10475 abscabs 10961 ∥ cdvds 11749 ℙcprime 12061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-xor 1371 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-2o 6396 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-proddc 11514 df-dvds 11750 df-gcd 11898 df-prm 12062 df-phi 12165 |
This theorem is referenced by: lgsfcl2 13701 |
Copyright terms: Public domain | W3C validator |