Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lgslem4 | GIF version |
Description: Lemma for lgsfcl2 13976. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.) |
Ref | Expression |
---|---|
lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
Ref | Expression |
---|---|
lgslem4 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3255 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
2 | 1 | adantl 277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℙ) |
3 | simpl 109 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝐴 ∈ ℤ) | |
4 | oddprm 12224 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
5 | 4 | adantl 277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) / 2) ∈ ℕ) |
6 | prmdvdsexp 12113 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃 ∥ 𝐴)) | |
7 | 2, 3, 5, 6 | syl3anc 1238 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ↔ 𝑃 ∥ 𝐴)) |
8 | 7 | biimpar 297 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → 𝑃 ∥ (𝐴↑((𝑃 − 1) / 2))) |
9 | prmgt1 12097 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
10 | 1, 9 | syl 14 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃) |
11 | 10 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → 1 < 𝑃) |
12 | p1modz1 11767 | . . . . 5 ⊢ ((𝑃 ∥ (𝐴↑((𝑃 − 1) / 2)) ∧ 1 < 𝑃) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1) | |
13 | 8, 11, 12 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1) |
14 | 13 | oveq1d 5880 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (1 − 1)) |
15 | 1m1e0 8959 | . . . 4 ⊢ (1 − 1) = 0 | |
16 | lgslem2.z | . . . . . 6 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
17 | 16 | lgslem2 13971 | . . . . 5 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
18 | 17 | simp2i 1007 | . . . 4 ⊢ 0 ∈ 𝑍 |
19 | 15, 18 | eqeltri 2248 | . . 3 ⊢ (1 − 1) ∈ 𝑍 |
20 | 14, 19 | eqeltrdi 2266 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
21 | lgslem1 13970 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2}) | |
22 | elpri 3612 | . . . 4 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)) | |
23 | oveq1 5872 | . . . . . 6 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (0 − 1)) | |
24 | df-neg 8105 | . . . . . . 7 ⊢ -1 = (0 − 1) | |
25 | 17 | simp1i 1006 | . . . . . . 7 ⊢ -1 ∈ 𝑍 |
26 | 24, 25 | eqeltrri 2249 | . . . . . 6 ⊢ (0 − 1) ∈ 𝑍 |
27 | 23, 26 | eqeltrdi 2266 | . . . . 5 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
28 | oveq1 5872 | . . . . . 6 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (2 − 1)) | |
29 | 2m1e1 9008 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
30 | 17 | simp3i 1008 | . . . . . . 7 ⊢ 1 ∈ 𝑍 |
31 | 29, 30 | eqeltri 2248 | . . . . . 6 ⊢ (2 − 1) ∈ 𝑍 |
32 | 28, 31 | eqeltrdi 2266 | . . . . 5 ⊢ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
33 | 27, 32 | jaoi 716 | . . . 4 ⊢ (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
34 | 21, 22, 33 | 3syl 17 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
35 | 34 | 3expa 1203 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃 ∥ 𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
36 | prmnn 12075 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
37 | 1, 36 | syl 14 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ) |
38 | 37 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ) |
39 | dvdsdc 11771 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → DECID 𝑃 ∥ 𝐴) | |
40 | 38, 3, 39 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → DECID 𝑃 ∥ 𝐴) |
41 | exmiddc 836 | . . 3 ⊢ (DECID 𝑃 ∥ 𝐴 → (𝑃 ∥ 𝐴 ∨ ¬ 𝑃 ∥ 𝐴)) | |
42 | 40, 41 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ 𝐴 ∨ ¬ 𝑃 ∥ 𝐴)) |
43 | 20, 35, 42 | mpjaodan 798 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 DECID wdc 834 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 {crab 2457 ∖ cdif 3124 {csn 3589 {cpr 3590 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 0cc0 7786 1c1 7787 + caddc 7789 < clt 7966 ≤ cle 7967 − cmin 8102 -cneg 8103 / cdiv 8601 ℕcn 8890 2c2 8941 ℤcz 9224 mod cmo 10290 ↑cexp 10487 abscabs 10972 ∥ cdvds 11760 ℙcprime 12072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-xor 1376 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-frec 6382 df-1o 6407 df-2o 6408 df-oadd 6411 df-er 6525 df-en 6731 df-dom 6732 df-fin 6733 df-sup 6973 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-n0 9148 df-z 9225 df-uz 9500 df-q 9591 df-rp 9623 df-fz 9978 df-fzo 10111 df-fl 10238 df-mod 10291 df-seqfrec 10414 df-exp 10488 df-ihash 10722 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-clim 11253 df-proddc 11525 df-dvds 11761 df-gcd 11909 df-prm 12073 df-phi 12176 |
This theorem is referenced by: lgsfcl2 13976 |
Copyright terms: Public domain | W3C validator |