ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgscllem GIF version

Theorem lgscllem 14075
Description: The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
lgsfcl2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgscllem ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍)
Distinct variable groups:   𝐴,𝑛,𝑥   𝑥,𝐹   𝑛,𝑁,𝑥   𝑛,𝑍
Allowed substitution hints:   𝐹(𝑛)   𝑍(𝑥)

Proof of Theorem lgscllem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
21lgsval 14072 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
3 lgsfcl2.z . . . . . . . 8 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
43lgslem2 14069 . . . . . . 7 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
54simp3i 1008 . . . . . 6 1 ∈ 𝑍
65a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑍)
74simp2i 1007 . . . . . 6 0 ∈ 𝑍
87a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ 𝑍)
9 zsqcl 10576 . . . . . 6 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
10 1zzd 9269 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℤ)
11 zdceq 9317 . . . . . 6 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴↑2) = 1)
129, 10, 11syl2an2r 595 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝐴↑2) = 1)
136, 8, 12ifcldcd 3569 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍)
1413adantr 276 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍)
154simp1i 1006 . . . . . 6 -1 ∈ 𝑍
1615a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -1 ∈ 𝑍)
17 simpr 110 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
18 0zd 9254 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ)
19 zdclt 9319 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0)
2017, 18, 19syl2anc 411 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 0)
21 zdclt 9319 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0)
2218, 21syldan 282 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐴 < 0)
23 dcan2 934 . . . . . 6 (DECID 𝑁 < 0 → (DECID 𝐴 < 0 → DECID (𝑁 < 0 ∧ 𝐴 < 0)))
2420, 22, 23sylc 62 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑁 < 0 ∧ 𝐴 < 0))
2516, 6, 24ifcldcd 3569 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍)
26 nnuz 9552 . . . . . 6 ℕ = (ℤ‘1)
27 1zzd 9269 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 1 ∈ ℤ)
28 df-ne 2348 . . . . . . . 8 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
291, 3lgsfcl2 14074 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
30293expa 1203 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
3128, 30sylan2br 288 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝐹:ℕ⟶𝑍)
3231ffvelcdmda 5647 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ 𝑍)
333lgslem3 14070 . . . . . . 7 ((𝑦𝑍𝑧𝑍) → (𝑦 · 𝑧) ∈ 𝑍)
3433adantl 277 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ (𝑦𝑍𝑧𝑍)) → (𝑦 · 𝑧) ∈ 𝑍)
3526, 27, 32, 34seqf 10447 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → seq1( · , 𝐹):ℕ⟶𝑍)
36 simplr 528 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
37 simpr 110 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
3837neqned 2354 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
39 nnabscl 11093 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
4036, 38, 39syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ ℕ)
4135, 40ffvelcdmd 5648 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍)
423lgslem3 14070 . . . 4 ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 ∧ (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍)
4325, 41, 42syl2an2r 595 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍)
44 zdceq 9317 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
4517, 18, 44syl2anc 411 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
4614, 43, 45ifcldadc 3563 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ 𝑍)
472, 46eqeltrd 2254 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  {crab 2459  ifcif 3534  {cpr 3592   class class class wbr 4000  cmpt 4061  wf 5208  cfv 5212  (class class class)co 5869  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118  -cneg 8119   / cdiv 8618  cn 8908  2c2 8959  7c7 8964  8c8 8965  cz 9242   mod cmo 10308  seqcseq 10431  cexp 10505  abscabs 10990  cdvds 11778  cprime 12090   pCnt cpc 12267   /L clgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by:  lgscl2  14080
  Copyright terms: Public domain W3C validator