ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgscllem GIF version

Theorem lgscllem 15332
Description: The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
lgsfcl2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgscllem ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍)
Distinct variable groups:   𝐴,𝑛,𝑥   𝑥,𝐹   𝑛,𝑁,𝑥   𝑛,𝑍
Allowed substitution hints:   𝐹(𝑛)   𝑍(𝑥)

Proof of Theorem lgscllem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
21lgsval 15329 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
3 lgsfcl2.z . . . . . . . 8 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
43lgslem2 15326 . . . . . . 7 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
54simp3i 1010 . . . . . 6 1 ∈ 𝑍
65a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑍)
74simp2i 1009 . . . . . 6 0 ∈ 𝑍
87a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ 𝑍)
9 zsqcl 10719 . . . . . 6 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
10 1zzd 9370 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℤ)
11 zdceq 9418 . . . . . 6 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴↑2) = 1)
129, 10, 11syl2an2r 595 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝐴↑2) = 1)
136, 8, 12ifcldcd 3598 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍)
1413adantr 276 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍)
154simp1i 1008 . . . . . 6 -1 ∈ 𝑍
1615a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -1 ∈ 𝑍)
17 simpr 110 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
18 0zd 9355 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ)
19 zdclt 9420 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0)
2017, 18, 19syl2anc 411 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 0)
21 zdclt 9420 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0)
2218, 21syldan 282 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐴 < 0)
23 dcan2 936 . . . . . 6 (DECID 𝑁 < 0 → (DECID 𝐴 < 0 → DECID (𝑁 < 0 ∧ 𝐴 < 0)))
2420, 22, 23sylc 62 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑁 < 0 ∧ 𝐴 < 0))
2516, 6, 24ifcldcd 3598 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍)
26 nnuz 9654 . . . . . 6 ℕ = (ℤ‘1)
27 1zzd 9370 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 1 ∈ ℤ)
28 df-ne 2368 . . . . . . . 8 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
291, 3lgsfcl2 15331 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
30293expa 1205 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍)
3128, 30sylan2br 288 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝐹:ℕ⟶𝑍)
3231ffvelcdmda 5700 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ 𝑍)
333lgslem3 15327 . . . . . . 7 ((𝑦𝑍𝑧𝑍) → (𝑦 · 𝑧) ∈ 𝑍)
3433adantl 277 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ (𝑦𝑍𝑧𝑍)) → (𝑦 · 𝑧) ∈ 𝑍)
3526, 27, 32, 34seqf 10573 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → seq1( · , 𝐹):ℕ⟶𝑍)
36 simplr 528 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
37 simpr 110 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
3837neqned 2374 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
39 nnabscl 11282 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
4036, 38, 39syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ ℕ)
4135, 40ffvelcdmd 5701 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍)
423lgslem3 15327 . . . 4 ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 ∧ (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍)
4325, 41, 42syl2an2r 595 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍)
44 zdceq 9418 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
4517, 18, 44syl2anc 411 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
4614, 43, 45ifcldadc 3591 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ 𝑍)
472, 46eqeltrd 2273 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  {crab 2479  ifcif 3562  {cpr 3624   class class class wbr 4034  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214  -cneg 8215   / cdiv 8716  cn 9007  2c2 9058  7c7 9063  8c8 9064  cz 9343   mod cmo 10431  seqcseq 10556  cexp 10647  abscabs 11179  cdvds 11969  cprime 12300   pCnt cpc 12478   /L clgs 15322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733  df-dvds 11970  df-gcd 12146  df-prm 12301  df-phi 12404  df-pc 12479  df-lgs 15323
This theorem is referenced by:  lgscl2  15337
  Copyright terms: Public domain W3C validator