| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lgscllem | GIF version | ||
| Description: The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| lgsval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) | 
| lgsfcl2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | 
| Ref | Expression | 
|---|---|
| lgscllem | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lgsval.1 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) | |
| 2 | 1 | lgsval 15245 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))) | 
| 3 | lgsfcl2.z | . . . . . . . 8 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 4 | 3 | lgslem2 15242 | . . . . . . 7 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) | 
| 5 | 4 | simp3i 1010 | . . . . . 6 ⊢ 1 ∈ 𝑍 | 
| 6 | 5 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑍) | 
| 7 | 4 | simp2i 1009 | . . . . . 6 ⊢ 0 ∈ 𝑍 | 
| 8 | 7 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ 𝑍) | 
| 9 | zsqcl 10702 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
| 10 | 1zzd 9353 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℤ) | |
| 11 | zdceq 9401 | . . . . . 6 ⊢ (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴↑2) = 1) | |
| 12 | 9, 10, 11 | syl2an2r 595 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝐴↑2) = 1) | 
| 13 | 6, 8, 12 | ifcldcd 3597 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍) | 
| 14 | 13 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍) | 
| 15 | 4 | simp1i 1008 | . . . . . 6 ⊢ -1 ∈ 𝑍 | 
| 16 | 15 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -1 ∈ 𝑍) | 
| 17 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 18 | 0zd 9338 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ) | |
| 19 | zdclt 9403 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0) | |
| 20 | 17, 18, 19 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 0) | 
| 21 | zdclt 9403 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0) | |
| 22 | 18, 21 | syldan 282 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐴 < 0) | 
| 23 | dcan2 936 | . . . . . 6 ⊢ (DECID 𝑁 < 0 → (DECID 𝐴 < 0 → DECID (𝑁 < 0 ∧ 𝐴 < 0))) | |
| 24 | 20, 22, 23 | sylc 62 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑁 < 0 ∧ 𝐴 < 0)) | 
| 25 | 16, 6, 24 | ifcldcd 3597 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍) | 
| 26 | nnuz 9637 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 27 | 1zzd 9353 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 1 ∈ ℤ) | |
| 28 | df-ne 2368 | . . . . . . . 8 ⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) | |
| 29 | 1, 3 | lgsfcl2 15247 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) | 
| 30 | 29 | 3expa 1205 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) | 
| 31 | 28, 30 | sylan2br 288 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝐹:ℕ⟶𝑍) | 
| 32 | 31 | ffvelcdmda 5697 | . . . . . 6 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℕ) → (𝐹‘𝑦) ∈ 𝑍) | 
| 33 | 3 | lgslem3 15243 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍) → (𝑦 · 𝑧) ∈ 𝑍) | 
| 34 | 33 | adantl 277 | . . . . . 6 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ (𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍)) → (𝑦 · 𝑧) ∈ 𝑍) | 
| 35 | 26, 27, 32, 34 | seqf 10556 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → seq1( · , 𝐹):ℕ⟶𝑍) | 
| 36 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ) | |
| 37 | simpr 110 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
| 38 | 37 | neqned 2374 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) | 
| 39 | nnabscl 11265 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | |
| 40 | 36, 38, 39 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ ℕ) | 
| 41 | 35, 40 | ffvelcdmd 5698 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) | 
| 42 | 3 | lgslem3 15243 | . . . 4 ⊢ ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 ∧ (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) | 
| 43 | 25, 41, 42 | syl2an2r 595 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) | 
| 44 | zdceq 9401 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
| 45 | 17, 18, 44 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0) | 
| 46 | 14, 43, 45 | ifcldadc 3590 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ 𝑍) | 
| 47 | 2, 46 | eqeltrd 2273 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 {crab 2479 ifcif 3561 {cpr 3623 class class class wbr 4033 ↦ cmpt 4094 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 · cmul 7884 < clt 8061 ≤ cle 8062 − cmin 8197 -cneg 8198 / cdiv 8699 ℕcn 8990 2c2 9041 7c7 9046 8c8 9047 ℤcz 9326 mod cmo 10414 seqcseq 10539 ↑cexp 10630 abscabs 11162 ∥ cdvds 11952 ℙcprime 12275 pCnt cpc 12453 /L clgs 15238 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-proddc 11716 df-dvds 11953 df-gcd 12121 df-prm 12276 df-phi 12379 df-pc 12454 df-lgs 15239 | 
| This theorem is referenced by: lgscl2 15253 | 
| Copyright terms: Public domain | W3C validator |