![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lgscllem | GIF version |
Description: The Legendre symbol is an element of 𝑍. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) |
lgsfcl2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
Ref | Expression |
---|---|
lgscllem | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsval.1 | . . 3 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) | |
2 | 1 | lgsval 15120 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))) |
3 | lgsfcl2.z | . . . . . . . 8 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
4 | 3 | lgslem2 15117 | . . . . . . 7 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
5 | 4 | simp3i 1010 | . . . . . 6 ⊢ 1 ∈ 𝑍 |
6 | 5 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑍) |
7 | 4 | simp2i 1009 | . . . . . 6 ⊢ 0 ∈ 𝑍 |
8 | 7 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ 𝑍) |
9 | zsqcl 10681 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
10 | 1zzd 9344 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℤ) | |
11 | zdceq 9392 | . . . . . 6 ⊢ (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴↑2) = 1) | |
12 | 9, 10, 11 | syl2an2r 595 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝐴↑2) = 1) |
13 | 6, 8, 12 | ifcldcd 3593 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍) |
14 | 13 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → if((𝐴↑2) = 1, 1, 0) ∈ 𝑍) |
15 | 4 | simp1i 1008 | . . . . . 6 ⊢ -1 ∈ 𝑍 |
16 | 15 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -1 ∈ 𝑍) |
17 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
18 | 0zd 9329 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ) | |
19 | zdclt 9394 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 < 0) | |
20 | 17, 18, 19 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 0) |
21 | zdclt 9394 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐴 < 0) | |
22 | 18, 21 | syldan 282 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐴 < 0) |
23 | dcan2 936 | . . . . . 6 ⊢ (DECID 𝑁 < 0 → (DECID 𝐴 < 0 → DECID (𝑁 < 0 ∧ 𝐴 < 0))) | |
24 | 20, 22, 23 | sylc 62 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑁 < 0 ∧ 𝐴 < 0)) |
25 | 16, 6, 24 | ifcldcd 3593 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍) |
26 | nnuz 9628 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
27 | 1zzd 9344 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 1 ∈ ℤ) | |
28 | df-ne 2365 | . . . . . . . 8 ⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) | |
29 | 1, 3 | lgsfcl2 15122 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |
30 | 29 | 3expa 1205 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |
31 | 28, 30 | sylan2br 288 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝐹:ℕ⟶𝑍) |
32 | 31 | ffvelcdmda 5693 | . . . . . 6 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℕ) → (𝐹‘𝑦) ∈ 𝑍) |
33 | 3 | lgslem3 15118 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍) → (𝑦 · 𝑧) ∈ 𝑍) |
34 | 33 | adantl 277 | . . . . . 6 ⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) ∧ (𝑦 ∈ 𝑍 ∧ 𝑧 ∈ 𝑍)) → (𝑦 · 𝑧) ∈ 𝑍) |
35 | 26, 27, 32, 34 | seqf 10535 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → seq1( · , 𝐹):ℕ⟶𝑍) |
36 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ) | |
37 | simpr 110 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0) | |
38 | 37 | neqned 2371 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0) |
39 | nnabscl 11244 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ) | |
40 | 36, 38, 39 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (abs‘𝑁) ∈ ℕ) |
41 | 35, 40 | ffvelcdmd 5694 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) |
42 | 3 | lgslem3 15118 | . . . 4 ⊢ ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ 𝑍 ∧ (seq1( · , 𝐹)‘(abs‘𝑁)) ∈ 𝑍) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) |
43 | 25, 41, 42 | syl2an2r 595 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 = 0) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ 𝑍) |
44 | zdceq 9392 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
45 | 17, 18, 44 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0) |
46 | 14, 43, 45 | ifcldadc 3586 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ 𝑍) |
47 | 2, 46 | eqeltrd 2270 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ 𝑍) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 {crab 2476 ifcif 3557 {cpr 3619 class class class wbr 4029 ↦ cmpt 4090 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 < clt 8054 ≤ cle 8055 − cmin 8190 -cneg 8191 / cdiv 8691 ℕcn 8982 2c2 9033 7c7 9038 8c8 9039 ℤcz 9317 mod cmo 10393 seqcseq 10518 ↑cexp 10609 abscabs 11141 ∥ cdvds 11930 ℙcprime 12245 pCnt cpc 12422 /L clgs 15113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-2o 6470 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-proddc 11694 df-dvds 11931 df-gcd 12080 df-prm 12246 df-phi 12349 df-pc 12423 df-lgs 15114 |
This theorem is referenced by: lgscl2 15128 |
Copyright terms: Public domain | W3C validator |