ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleun GIF version

Theorem strleun 12807
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strleun.f 𝐹 Struct ⟨𝐴, 𝐵
strleun.g 𝐺 Struct ⟨𝐶, 𝐷
strleun.l 𝐵 < 𝐶
Assertion
Ref Expression
strleun (𝐹𝐺) Struct ⟨𝐴, 𝐷

Proof of Theorem strleun
StepHypRef Expression
1 strleun.f . . . . . 6 𝐹 Struct ⟨𝐴, 𝐵
2 isstructim 12717 . . . . . 6 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2ax-mp 5 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))
43simp1i 1008 . . . 4 (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵)
54simp1i 1008 . . 3 𝐴 ∈ ℕ
6 strleun.g . . . . . 6 𝐺 Struct ⟨𝐶, 𝐷
7 isstructim 12717 . . . . . 6 (𝐺 Struct ⟨𝐶, 𝐷⟩ → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7ax-mp 5 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))
98simp1i 1008 . . . 4 (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷)
109simp2i 1009 . . 3 𝐷 ∈ ℕ
114simp3i 1010 . . . . 5 𝐴𝐵
124simp2i 1009 . . . . . . 7 𝐵 ∈ ℕ
1312nnrei 9016 . . . . . 6 𝐵 ∈ ℝ
149simp1i 1008 . . . . . . 7 𝐶 ∈ ℕ
1514nnrei 9016 . . . . . 6 𝐶 ∈ ℝ
16 strleun.l . . . . . 6 𝐵 < 𝐶
1713, 15, 16ltleii 8146 . . . . 5 𝐵𝐶
185nnrei 9016 . . . . . 6 𝐴 ∈ ℝ
1918, 13, 15letri 8151 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
2011, 17, 19mp2an 426 . . . 4 𝐴𝐶
219simp3i 1010 . . . 4 𝐶𝐷
2210nnrei 9016 . . . . 5 𝐷 ∈ ℝ
2318, 15, 22letri 8151 . . . 4 ((𝐴𝐶𝐶𝐷) → 𝐴𝐷)
2420, 21, 23mp2an 426 . . 3 𝐴𝐷
255, 10, 243pm3.2i 1177 . 2 (𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷)
263simp2i 1009 . . . . . 6 Fun (𝐹 ∖ {∅})
278simp2i 1009 . . . . . 6 Fun (𝐺 ∖ {∅})
2826, 27pm3.2i 272 . . . . 5 (Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅}))
29 difss 3290 . . . . . . . . 9 (𝐹 ∖ {∅}) ⊆ 𝐹
30 dmss 4866 . . . . . . . . 9 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
3129, 30ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
323simp3i 1010 . . . . . . . 8 dom 𝐹 ⊆ (𝐴...𝐵)
3331, 32sstri 3193 . . . . . . 7 dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵)
34 difss 3290 . . . . . . . . 9 (𝐺 ∖ {∅}) ⊆ 𝐺
35 dmss 4866 . . . . . . . . 9 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3634, 35ax-mp 5 . . . . . . . 8 dom (𝐺 ∖ {∅}) ⊆ dom 𝐺
378simp3i 1010 . . . . . . . 8 dom 𝐺 ⊆ (𝐶...𝐷)
3836, 37sstri 3193 . . . . . . 7 dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)
39 ss2in 3392 . . . . . . 7 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
4033, 38, 39mp2an 426 . . . . . 6 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷))
41 fzdisj 10144 . . . . . . 7 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
4216, 41ax-mp 5 . . . . . 6 ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅
43 sseq0 3493 . . . . . 6 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4440, 42, 43mp2an 426 . . . . 5 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅
45 funun 5303 . . . . 5 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4628, 44, 45mp2an 426 . . . 4 Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
47 difundir 3417 . . . . 5 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4847funeqi 5280 . . . 4 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4946, 48mpbir 146 . . 3 Fun ((𝐹𝐺) ∖ {∅})
50 structex 12715 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
511, 50ax-mp 5 . . . 4 𝐹 ∈ V
52 structex 12715 . . . . 5 (𝐺 Struct ⟨𝐶, 𝐷⟩ → 𝐺 ∈ V)
536, 52ax-mp 5 . . . 4 𝐺 ∈ V
5451, 53unex 4477 . . 3 (𝐹𝐺) ∈ V
55 dmun 4874 . . . 4 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5612nnzi 9364 . . . . . . . 8 𝐵 ∈ ℤ
5710nnzi 9364 . . . . . . . 8 𝐷 ∈ ℤ
5813, 15, 22letri 8151 . . . . . . . . 9 ((𝐵𝐶𝐶𝐷) → 𝐵𝐷)
5917, 21, 58mp2an 426 . . . . . . . 8 𝐵𝐷
60 eluz2 9624 . . . . . . . 8 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
6156, 57, 59, 60mpbir3an 1181 . . . . . . 7 𝐷 ∈ (ℤ𝐵)
62 fzss2 10156 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
6361, 62ax-mp 5 . . . . . 6 (𝐴...𝐵) ⊆ (𝐴...𝐷)
6432, 63sstri 3193 . . . . 5 dom 𝐹 ⊆ (𝐴...𝐷)
655nnzi 9364 . . . . . . . 8 𝐴 ∈ ℤ
6614nnzi 9364 . . . . . . . 8 𝐶 ∈ ℤ
67 eluz2 9624 . . . . . . . 8 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6865, 66, 20, 67mpbir3an 1181 . . . . . . 7 𝐶 ∈ (ℤ𝐴)
69 fzss1 10155 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
7068, 69ax-mp 5 . . . . . 6 (𝐶...𝐷) ⊆ (𝐴...𝐷)
7137, 70sstri 3193 . . . . 5 dom 𝐺 ⊆ (𝐴...𝐷)
7264, 71unssi 3339 . . . 4 (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷)
7355, 72eqsstri 3216 . . 3 dom (𝐹𝐺) ⊆ (𝐴...𝐷)
7449, 54, 733pm3.2i 1177 . 2 (Fun ((𝐹𝐺) ∖ {∅}) ∧ (𝐹𝐺) ∈ V ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷))
75 isstructr 12718 . 2 (((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ (Fun ((𝐹𝐺) ∖ {∅}) ∧ (𝐹𝐺) ∈ V ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷))) → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
7625, 74, 75mp2an 426 1 (𝐹𝐺) Struct ⟨𝐴, 𝐷
Colors of variables: wff set class
Syntax hints:  wa 104  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  cdif 3154  cun 3155  cin 3156  wss 3157  c0 3451  {csn 3623  cop 3626   class class class wbr 4034  dom cdm 4664  Fun wfun 5253  cfv 5259  (class class class)co 5925   < clt 8078  cle 8079  cn 9007  cz 9343  cuz 9618  ...cfz 10100   Struct cstr 12699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-z 9344  df-uz 9619  df-fz 10101  df-struct 12705
This theorem is referenced by:  cnfldstr  14190
  Copyright terms: Public domain W3C validator