Proof of Theorem strleun
Step | Hyp | Ref
| Expression |
1 | | strleun.f |
. . . . . 6
⊢ 𝐹 Struct 〈𝐴, 𝐵〉 |
2 | | isstructim 12429 |
. . . . . 6
⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)) |
4 | 3 | simp1i 1001 |
. . . 4
⊢ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) |
5 | 4 | simp1i 1001 |
. . 3
⊢ 𝐴 ∈ ℕ |
6 | | strleun.g |
. . . . . 6
⊢ 𝐺 Struct 〈𝐶, 𝐷〉 |
7 | | isstructim 12429 |
. . . . . 6
⊢ (𝐺 Struct 〈𝐶, 𝐷〉 → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢ ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)) |
9 | 8 | simp1i 1001 |
. . . 4
⊢ (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷) |
10 | 9 | simp2i 1002 |
. . 3
⊢ 𝐷 ∈ ℕ |
11 | 4 | simp3i 1003 |
. . . . 5
⊢ 𝐴 ≤ 𝐵 |
12 | 4 | simp2i 1002 |
. . . . . . 7
⊢ 𝐵 ∈ ℕ |
13 | 12 | nnrei 8886 |
. . . . . 6
⊢ 𝐵 ∈ ℝ |
14 | 9 | simp1i 1001 |
. . . . . . 7
⊢ 𝐶 ∈ ℕ |
15 | 14 | nnrei 8886 |
. . . . . 6
⊢ 𝐶 ∈ ℝ |
16 | | strleun.l |
. . . . . 6
⊢ 𝐵 < 𝐶 |
17 | 13, 15, 16 | ltleii 8021 |
. . . . 5
⊢ 𝐵 ≤ 𝐶 |
18 | 5 | nnrei 8886 |
. . . . . 6
⊢ 𝐴 ∈ ℝ |
19 | 18, 13, 15 | letri 8026 |
. . . . 5
⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
20 | 11, 17, 19 | mp2an 424 |
. . . 4
⊢ 𝐴 ≤ 𝐶 |
21 | 9 | simp3i 1003 |
. . . 4
⊢ 𝐶 ≤ 𝐷 |
22 | 10 | nnrei 8886 |
. . . . 5
⊢ 𝐷 ∈ ℝ |
23 | 18, 15, 22 | letri 8026 |
. . . 4
⊢ ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷) → 𝐴 ≤ 𝐷) |
24 | 20, 21, 23 | mp2an 424 |
. . 3
⊢ 𝐴 ≤ 𝐷 |
25 | 5, 10, 24 | 3pm3.2i 1170 |
. 2
⊢ (𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴 ≤ 𝐷) |
26 | 3 | simp2i 1002 |
. . . . . 6
⊢ Fun
(𝐹 ∖
{∅}) |
27 | 8 | simp2i 1002 |
. . . . . 6
⊢ Fun
(𝐺 ∖
{∅}) |
28 | 26, 27 | pm3.2i 270 |
. . . . 5
⊢ (Fun
(𝐹 ∖ {∅}) ∧
Fun (𝐺 ∖
{∅})) |
29 | | difss 3253 |
. . . . . . . . 9
⊢ (𝐹 ∖ {∅}) ⊆
𝐹 |
30 | | dmss 4809 |
. . . . . . . . 9
⊢ ((𝐹 ∖ {∅}) ⊆
𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom
𝐹) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . 8
⊢ dom
(𝐹 ∖ {∅})
⊆ dom 𝐹 |
32 | 3 | simp3i 1003 |
. . . . . . . 8
⊢ dom 𝐹 ⊆ (𝐴...𝐵) |
33 | 31, 32 | sstri 3156 |
. . . . . . 7
⊢ dom
(𝐹 ∖ {∅})
⊆ (𝐴...𝐵) |
34 | | difss 3253 |
. . . . . . . . 9
⊢ (𝐺 ∖ {∅}) ⊆
𝐺 |
35 | | dmss 4809 |
. . . . . . . . 9
⊢ ((𝐺 ∖ {∅}) ⊆
𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom
𝐺) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . 8
⊢ dom
(𝐺 ∖ {∅})
⊆ dom 𝐺 |
37 | 8 | simp3i 1003 |
. . . . . . . 8
⊢ dom 𝐺 ⊆ (𝐶...𝐷) |
38 | 36, 37 | sstri 3156 |
. . . . . . 7
⊢ dom
(𝐺 ∖ {∅})
⊆ (𝐶...𝐷) |
39 | | ss2in 3355 |
. . . . . . 7
⊢ ((dom
(𝐹 ∖ {∅})
⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆
((𝐴...𝐵) ∩ (𝐶...𝐷))) |
40 | 33, 38, 39 | mp2an 424 |
. . . . . 6
⊢ (dom
(𝐹 ∖ {∅}) ∩
dom (𝐺 ∖ {∅}))
⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) |
41 | | fzdisj 10007 |
. . . . . . 7
⊢ (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) |
42 | 16, 41 | ax-mp 5 |
. . . . . 6
⊢ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅ |
43 | | sseq0 3455 |
. . . . . 6
⊢ (((dom
(𝐹 ∖ {∅}) ∩
dom (𝐺 ∖ {∅}))
⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) =
∅) |
44 | 40, 42, 43 | mp2an 424 |
. . . . 5
⊢ (dom
(𝐹 ∖ {∅}) ∩
dom (𝐺 ∖ {∅}))
= ∅ |
45 | | funun 5241 |
. . . . 5
⊢ (((Fun
(𝐹 ∖ {∅}) ∧
Fun (𝐺 ∖ {∅}))
∧ (dom (𝐹 ∖
{∅}) ∩ dom (𝐺
∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))) |
46 | 28, 44, 45 | mp2an 424 |
. . . 4
⊢ Fun
((𝐹 ∖ {∅})
∪ (𝐺 ∖
{∅})) |
47 | | difundir 3380 |
. . . . 5
⊢ ((𝐹 ∪ 𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})) |
48 | 47 | funeqi 5218 |
. . . 4
⊢ (Fun
((𝐹 ∪ 𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖
{∅}))) |
49 | 46, 48 | mpbir 145 |
. . 3
⊢ Fun
((𝐹 ∪ 𝐺) ∖ {∅}) |
50 | | structex 12427 |
. . . . 5
⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → 𝐹 ∈ V) |
51 | 1, 50 | ax-mp 5 |
. . . 4
⊢ 𝐹 ∈ V |
52 | | structex 12427 |
. . . . 5
⊢ (𝐺 Struct 〈𝐶, 𝐷〉 → 𝐺 ∈ V) |
53 | 6, 52 | ax-mp 5 |
. . . 4
⊢ 𝐺 ∈ V |
54 | 51, 53 | unex 4425 |
. . 3
⊢ (𝐹 ∪ 𝐺) ∈ V |
55 | | dmun 4817 |
. . . 4
⊢ dom
(𝐹 ∪ 𝐺) = (dom 𝐹 ∪ dom 𝐺) |
56 | 12 | nnzi 9232 |
. . . . . . . 8
⊢ 𝐵 ∈ ℤ |
57 | 10 | nnzi 9232 |
. . . . . . . 8
⊢ 𝐷 ∈ ℤ |
58 | 13, 15, 22 | letri 8026 |
. . . . . . . . 9
⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷) → 𝐵 ≤ 𝐷) |
59 | 17, 21, 58 | mp2an 424 |
. . . . . . . 8
⊢ 𝐵 ≤ 𝐷 |
60 | | eluz2 9492 |
. . . . . . . 8
⊢ (𝐷 ∈
(ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵 ≤ 𝐷)) |
61 | 56, 57, 59, 60 | mpbir3an 1174 |
. . . . . . 7
⊢ 𝐷 ∈
(ℤ≥‘𝐵) |
62 | | fzss2 10019 |
. . . . . . 7
⊢ (𝐷 ∈
(ℤ≥‘𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷)) |
63 | 61, 62 | ax-mp 5 |
. . . . . 6
⊢ (𝐴...𝐵) ⊆ (𝐴...𝐷) |
64 | 32, 63 | sstri 3156 |
. . . . 5
⊢ dom 𝐹 ⊆ (𝐴...𝐷) |
65 | 5 | nnzi 9232 |
. . . . . . . 8
⊢ 𝐴 ∈ ℤ |
66 | 14 | nnzi 9232 |
. . . . . . . 8
⊢ 𝐶 ∈ ℤ |
67 | | eluz2 9492 |
. . . . . . . 8
⊢ (𝐶 ∈
(ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) |
68 | 65, 66, 20, 67 | mpbir3an 1174 |
. . . . . . 7
⊢ 𝐶 ∈
(ℤ≥‘𝐴) |
69 | | fzss1 10018 |
. . . . . . 7
⊢ (𝐶 ∈
(ℤ≥‘𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷)) |
70 | 68, 69 | ax-mp 5 |
. . . . . 6
⊢ (𝐶...𝐷) ⊆ (𝐴...𝐷) |
71 | 37, 70 | sstri 3156 |
. . . . 5
⊢ dom 𝐺 ⊆ (𝐴...𝐷) |
72 | 64, 71 | unssi 3302 |
. . . 4
⊢ (dom
𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷) |
73 | 55, 72 | eqsstri 3179 |
. . 3
⊢ dom
(𝐹 ∪ 𝐺) ⊆ (𝐴...𝐷) |
74 | 49, 54, 73 | 3pm3.2i 1170 |
. 2
⊢ (Fun
((𝐹 ∪ 𝐺) ∖ {∅}) ∧ (𝐹 ∪ 𝐺) ∈ V ∧ dom (𝐹 ∪ 𝐺) ⊆ (𝐴...𝐷)) |
75 | | isstructr 12430 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴 ≤ 𝐷) ∧ (Fun ((𝐹 ∪ 𝐺) ∖ {∅}) ∧ (𝐹 ∪ 𝐺) ∈ V ∧ dom (𝐹 ∪ 𝐺) ⊆ (𝐴...𝐷))) → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) |
76 | 25, 74, 75 | mp2an 424 |
1
⊢ (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉 |