ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleun GIF version

Theorem strleun 12565
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strleun.f 𝐹 Struct ⟨𝐴, 𝐵
strleun.g 𝐺 Struct ⟨𝐶, 𝐷
strleun.l 𝐵 < 𝐶
Assertion
Ref Expression
strleun (𝐹𝐺) Struct ⟨𝐴, 𝐷

Proof of Theorem strleun
StepHypRef Expression
1 strleun.f . . . . . 6 𝐹 Struct ⟨𝐴, 𝐵
2 isstructim 12478 . . . . . 6 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2ax-mp 5 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))
43simp1i 1006 . . . 4 (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵)
54simp1i 1006 . . 3 𝐴 ∈ ℕ
6 strleun.g . . . . . 6 𝐺 Struct ⟨𝐶, 𝐷
7 isstructim 12478 . . . . . 6 (𝐺 Struct ⟨𝐶, 𝐷⟩ → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7ax-mp 5 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))
98simp1i 1006 . . . 4 (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷)
109simp2i 1007 . . 3 𝐷 ∈ ℕ
114simp3i 1008 . . . . 5 𝐴𝐵
124simp2i 1007 . . . . . . 7 𝐵 ∈ ℕ
1312nnrei 8930 . . . . . 6 𝐵 ∈ ℝ
149simp1i 1006 . . . . . . 7 𝐶 ∈ ℕ
1514nnrei 8930 . . . . . 6 𝐶 ∈ ℝ
16 strleun.l . . . . . 6 𝐵 < 𝐶
1713, 15, 16ltleii 8062 . . . . 5 𝐵𝐶
185nnrei 8930 . . . . . 6 𝐴 ∈ ℝ
1918, 13, 15letri 8067 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
2011, 17, 19mp2an 426 . . . 4 𝐴𝐶
219simp3i 1008 . . . 4 𝐶𝐷
2210nnrei 8930 . . . . 5 𝐷 ∈ ℝ
2318, 15, 22letri 8067 . . . 4 ((𝐴𝐶𝐶𝐷) → 𝐴𝐷)
2420, 21, 23mp2an 426 . . 3 𝐴𝐷
255, 10, 243pm3.2i 1175 . 2 (𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷)
263simp2i 1007 . . . . . 6 Fun (𝐹 ∖ {∅})
278simp2i 1007 . . . . . 6 Fun (𝐺 ∖ {∅})
2826, 27pm3.2i 272 . . . . 5 (Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅}))
29 difss 3263 . . . . . . . . 9 (𝐹 ∖ {∅}) ⊆ 𝐹
30 dmss 4828 . . . . . . . . 9 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
3129, 30ax-mp 5 . . . . . . . 8 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
323simp3i 1008 . . . . . . . 8 dom 𝐹 ⊆ (𝐴...𝐵)
3331, 32sstri 3166 . . . . . . 7 dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵)
34 difss 3263 . . . . . . . . 9 (𝐺 ∖ {∅}) ⊆ 𝐺
35 dmss 4828 . . . . . . . . 9 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3634, 35ax-mp 5 . . . . . . . 8 dom (𝐺 ∖ {∅}) ⊆ dom 𝐺
378simp3i 1008 . . . . . . . 8 dom 𝐺 ⊆ (𝐶...𝐷)
3836, 37sstri 3166 . . . . . . 7 dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)
39 ss2in 3365 . . . . . . 7 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
4033, 38, 39mp2an 426 . . . . . 6 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷))
41 fzdisj 10054 . . . . . . 7 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
4216, 41ax-mp 5 . . . . . 6 ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅
43 sseq0 3466 . . . . . 6 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4440, 42, 43mp2an 426 . . . . 5 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅
45 funun 5262 . . . . 5 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4628, 44, 45mp2an 426 . . . 4 Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
47 difundir 3390 . . . . 5 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4847funeqi 5239 . . . 4 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4946, 48mpbir 146 . . 3 Fun ((𝐹𝐺) ∖ {∅})
50 structex 12476 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
511, 50ax-mp 5 . . . 4 𝐹 ∈ V
52 structex 12476 . . . . 5 (𝐺 Struct ⟨𝐶, 𝐷⟩ → 𝐺 ∈ V)
536, 52ax-mp 5 . . . 4 𝐺 ∈ V
5451, 53unex 4443 . . 3 (𝐹𝐺) ∈ V
55 dmun 4836 . . . 4 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5612nnzi 9276 . . . . . . . 8 𝐵 ∈ ℤ
5710nnzi 9276 . . . . . . . 8 𝐷 ∈ ℤ
5813, 15, 22letri 8067 . . . . . . . . 9 ((𝐵𝐶𝐶𝐷) → 𝐵𝐷)
5917, 21, 58mp2an 426 . . . . . . . 8 𝐵𝐷
60 eluz2 9536 . . . . . . . 8 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
6156, 57, 59, 60mpbir3an 1179 . . . . . . 7 𝐷 ∈ (ℤ𝐵)
62 fzss2 10066 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
6361, 62ax-mp 5 . . . . . 6 (𝐴...𝐵) ⊆ (𝐴...𝐷)
6432, 63sstri 3166 . . . . 5 dom 𝐹 ⊆ (𝐴...𝐷)
655nnzi 9276 . . . . . . . 8 𝐴 ∈ ℤ
6614nnzi 9276 . . . . . . . 8 𝐶 ∈ ℤ
67 eluz2 9536 . . . . . . . 8 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6865, 66, 20, 67mpbir3an 1179 . . . . . . 7 𝐶 ∈ (ℤ𝐴)
69 fzss1 10065 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
7068, 69ax-mp 5 . . . . . 6 (𝐶...𝐷) ⊆ (𝐴...𝐷)
7137, 70sstri 3166 . . . . 5 dom 𝐺 ⊆ (𝐴...𝐷)
7264, 71unssi 3312 . . . 4 (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷)
7355, 72eqsstri 3189 . . 3 dom (𝐹𝐺) ⊆ (𝐴...𝐷)
7449, 54, 733pm3.2i 1175 . 2 (Fun ((𝐹𝐺) ∖ {∅}) ∧ (𝐹𝐺) ∈ V ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷))
75 isstructr 12479 . 2 (((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ (Fun ((𝐹𝐺) ∖ {∅}) ∧ (𝐹𝐺) ∈ V ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷))) → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
7625, 74, 75mp2an 426 1 (𝐹𝐺) Struct ⟨𝐴, 𝐷
Colors of variables: wff set class
Syntax hints:  wa 104  w3a 978   = wceq 1353  wcel 2148  Vcvv 2739  cdif 3128  cun 3129  cin 3130  wss 3131  c0 3424  {csn 3594  cop 3597   class class class wbr 4005  dom cdm 4628  Fun wfun 5212  cfv 5218  (class class class)co 5877   < clt 7994  cle 7995  cn 8921  cz 9255  cuz 9530  ...cfz 10010   Struct cstr 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-z 9256  df-uz 9531  df-fz 10011  df-struct 12466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator