ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp3i GIF version

Theorem simp3i 1032
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1 (𝜑𝜓𝜒)
Assertion
Ref Expression
simp3i 𝜒

Proof of Theorem simp3i
StepHypRef Expression
1 3simp1i.1 . 2 (𝜑𝜓𝜒)
2 simp3 1023 . 2 ((𝜑𝜓𝜒) → 𝜒)
31, 2ax-mp 5 1 𝜒
Colors of variables: wff set class
Syntax hints:  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  structfn  13046  strleun  13132  sratsetg  14403  sradsg  14406  lgslem4  15676  lgscllem  15680  lgsdir2lem2  15702  lgsdir2lem3  15703
  Copyright terms: Public domain W3C validator