![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3i | GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp3i | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp3 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: structfn 12481 strleun 12563 lgslem4 14407 lgscllem 14411 lgsdir2lem2 14433 lgsdir2lem3 14434 |
Copyright terms: Public domain | W3C validator |