Proof of Theorem lgsdir2lem2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | lgsdir2lem2.3 | 
. . 3
⊢ 𝑁 = (𝑀 + 1) | 
| 2 |   | lgsdir2lem2.2 | 
. . . . 5
⊢ 𝑀 = (𝐾 + 1) | 
| 3 |   | lgsdir2lem2.1 | 
. . . . . . 7
⊢ (𝐾 ∈ ℤ ∧ 2 ∥
(𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))) | 
| 4 | 3 | simp1i 1008 | 
. . . . . 6
⊢ 𝐾 ∈ ℤ | 
| 5 |   | peano2z 9362 | 
. . . . . 6
⊢ (𝐾 ∈ ℤ → (𝐾 + 1) ∈
ℤ) | 
| 6 | 4, 5 | ax-mp 5 | 
. . . . 5
⊢ (𝐾 + 1) ∈
ℤ | 
| 7 | 2, 6 | eqeltri 2269 | 
. . . 4
⊢ 𝑀 ∈ ℤ | 
| 8 |   | peano2z 9362 | 
. . . 4
⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈
ℤ) | 
| 9 | 7, 8 | ax-mp 5 | 
. . 3
⊢ (𝑀 + 1) ∈
ℤ | 
| 10 | 1, 9 | eqeltri 2269 | 
. 2
⊢ 𝑁 ∈ ℤ | 
| 11 | 3 | simp2i 1009 | 
. . . 4
⊢ 2 ∥
(𝐾 + 1) | 
| 12 |   | 2z 9354 | 
. . . . 5
⊢ 2 ∈
ℤ | 
| 13 |   | dvdsadd 12001 | 
. . . . 5
⊢ ((2
∈ ℤ ∧ (𝐾 +
1) ∈ ℤ) → (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1)))) | 
| 14 | 12, 6, 13 | mp2an 426 | 
. . . 4
⊢ (2
∥ (𝐾 + 1) ↔ 2
∥ (2 + (𝐾 +
1))) | 
| 15 | 11, 14 | mpbi 145 | 
. . 3
⊢ 2 ∥
(2 + (𝐾 +
1)) | 
| 16 |   | zcn 9331 | 
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) | 
| 17 | 4, 16 | ax-mp 5 | 
. . . . . . . . . 10
⊢ 𝐾 ∈ ℂ | 
| 18 |   | ax-1cn 7972 | 
. . . . . . . . . 10
⊢ 1 ∈
ℂ | 
| 19 | 17, 18 | addcomi 8170 | 
. . . . . . . . 9
⊢ (𝐾 + 1) = (1 + 𝐾) | 
| 20 | 2, 19 | eqtri 2217 | 
. . . . . . . 8
⊢ 𝑀 = (1 + 𝐾) | 
| 21 | 20 | oveq1i 5932 | 
. . . . . . 7
⊢ (𝑀 + 1) = ((1 + 𝐾) + 1) | 
| 22 | 1, 21 | eqtri 2217 | 
. . . . . 6
⊢ 𝑁 = ((1 + 𝐾) + 1) | 
| 23 |   | df-2 9049 | 
. . . . . . . 8
⊢ 2 = (1 +
1) | 
| 24 | 23 | oveq1i 5932 | 
. . . . . . 7
⊢ (2 +
𝐾) = ((1 + 1) + 𝐾) | 
| 25 | 18, 17, 18 | add32i 8190 | 
. . . . . . 7
⊢ ((1 +
𝐾) + 1) = ((1 + 1) + 𝐾) | 
| 26 | 24, 25 | eqtr4i 2220 | 
. . . . . 6
⊢ (2 +
𝐾) = ((1 + 𝐾) + 1) | 
| 27 | 22, 26 | eqtr4i 2220 | 
. . . . 5
⊢ 𝑁 = (2 + 𝐾) | 
| 28 | 27 | oveq1i 5932 | 
. . . 4
⊢ (𝑁 + 1) = ((2 + 𝐾) + 1) | 
| 29 |   | 2cn 9061 | 
. . . . 5
⊢ 2 ∈
ℂ | 
| 30 | 29, 17, 18 | addassi 8034 | 
. . . 4
⊢ ((2 +
𝐾) + 1) = (2 + (𝐾 + 1)) | 
| 31 | 28, 30 | eqtri 2217 | 
. . 3
⊢ (𝑁 + 1) = (2 + (𝐾 + 1)) | 
| 32 | 15, 31 | breqtrri 4060 | 
. 2
⊢ 2 ∥
(𝑁 + 1) | 
| 33 |   | elfzuz2 10104 | 
. . . . 5
⊢ ((𝐴 mod 8) ∈ (0...𝑁) → 𝑁 ∈
(ℤ≥‘0)) | 
| 34 |   | fzm1 10175 | 
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘0) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁))) | 
| 35 | 33, 34 | syl 14 | 
. . . 4
⊢ ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁))) | 
| 36 | 35 | ibi 176 | 
. . 3
⊢ ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)) | 
| 37 |   | elfzuz2 10104 | 
. . . . . . . 8
⊢ ((𝐴 mod 8) ∈ (0...𝑀) → 𝑀 ∈
(ℤ≥‘0)) | 
| 38 |   | fzm1 10175 | 
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘0) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))) | 
| 39 | 37, 38 | syl 14 | 
. . . . . . 7
⊢ ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))) | 
| 40 | 39 | ibi 176 | 
. . . . . 6
⊢ ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)) | 
| 41 |   | zcn 9331 | 
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) | 
| 42 | 7, 41 | ax-mp 5 | 
. . . . . . . 8
⊢ 𝑀 ∈ ℂ | 
| 43 | 42, 18, 1 | mvrraddi 8243 | 
. . . . . . 7
⊢ (𝑁 − 1) = 𝑀 | 
| 44 | 43 | oveq2i 5933 | 
. . . . . 6
⊢
(0...(𝑁 − 1))
= (0...𝑀) | 
| 45 | 40, 44 | eleq2s 2291 | 
. . . . 5
⊢ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)) | 
| 46 | 17, 18, 2 | mvrraddi 8243 | 
. . . . . . . . 9
⊢ (𝑀 − 1) = 𝐾 | 
| 47 | 46 | oveq2i 5933 | 
. . . . . . . 8
⊢
(0...(𝑀 − 1))
= (0...𝐾) | 
| 48 | 47 | eleq2i 2263 | 
. . . . . . 7
⊢ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ↔ (𝐴 mod 8) ∈ (0...𝐾)) | 
| 49 | 3 | simp3i 1010 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)) | 
| 50 | 48, 49 | biimtrid 152 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) → (𝐴 mod 8) ∈ 𝑆)) | 
| 51 |   | 2nn 9152 | 
. . . . . . . . . . 11
⊢ 2 ∈
ℕ | 
| 52 |   | 8nn 9158 | 
. . . . . . . . . . 11
⊢ 8 ∈
ℕ | 
| 53 |   | 4z 9356 | 
. . . . . . . . . . . . . 14
⊢ 4 ∈
ℤ | 
| 54 |   | dvdsmul2 11979 | 
. . . . . . . . . . . . . 14
⊢ ((4
∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (4 ·
2)) | 
| 55 | 53, 12, 54 | mp2an 426 | 
. . . . . . . . . . . . 13
⊢ 2 ∥
(4 · 2) | 
| 56 |   | 4t2e8 9149 | 
. . . . . . . . . . . . 13
⊢ (4
· 2) = 8 | 
| 57 | 55, 56 | breqtri 4058 | 
. . . . . . . . . . . 12
⊢ 2 ∥
8 | 
| 58 |   | dvdsmod 12027 | 
. . . . . . . . . . . 12
⊢ (((2
∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) ∧ 2 ∥ 8) →
(2 ∥ (𝐴 mod 8) ↔
2 ∥ 𝐴)) | 
| 59 | 57, 58 | mpan2 425 | 
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴)) | 
| 60 | 51, 52, 59 | mp3an12 1338 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℤ → (2
∥ (𝐴 mod 8) ↔ 2
∥ 𝐴)) | 
| 61 | 60 | notbid 668 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → (¬ 2
∥ (𝐴 mod 8) ↔
¬ 2 ∥ 𝐴)) | 
| 62 | 61 | biimpar 297 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ¬ 2
∥ (𝐴 mod
8)) | 
| 63 | 11, 2 | breqtrri 4060 | 
. . . . . . . . 9
⊢ 2 ∥
𝑀 | 
| 64 |   | id 19 | 
. . . . . . . . 9
⊢ ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) = 𝑀) | 
| 65 | 63, 64 | breqtrrid 4071 | 
. . . . . . . 8
⊢ ((𝐴 mod 8) = 𝑀 → 2 ∥ (𝐴 mod 8)) | 
| 66 | 62, 65 | nsyl 629 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ¬
(𝐴 mod 8) = 𝑀) | 
| 67 | 66 | pm2.21d 620 | 
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) ∈ 𝑆)) | 
| 68 | 50, 67 | jaod 718 | 
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀) → (𝐴 mod 8) ∈ 𝑆)) | 
| 69 | 45, 68 | syl5 32 | 
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → (𝐴 mod 8) ∈ 𝑆)) | 
| 70 |   | lgsdir2lem2.4 | 
. . . . . 6
⊢ 𝑁 ∈ 𝑆 | 
| 71 |   | eleq1 2259 | 
. . . . . 6
⊢ ((𝐴 mod 8) = 𝑁 → ((𝐴 mod 8) ∈ 𝑆 ↔ 𝑁 ∈ 𝑆)) | 
| 72 | 70, 71 | mpbiri 168 | 
. . . . 5
⊢ ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆) | 
| 73 | 72 | a1i 9 | 
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆)) | 
| 74 | 69, 73 | jaod 718 | 
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁) → (𝐴 mod 8) ∈ 𝑆)) | 
| 75 | 36, 74 | syl5 32 | 
. 2
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)) | 
| 76 | 10, 32, 75 | 3pm3.2i 1177 | 
1
⊢ (𝑁 ∈ ℤ ∧ 2 ∥
(𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))) |