ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem2 GIF version

Theorem lgsdir2lem2 14916
Description: Lemma for lgsdir2 14920. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
lgsdir2lem2.2 𝑀 = (𝐾 + 1)
lgsdir2lem2.3 𝑁 = (𝑀 + 1)
lgsdir2lem2.4 𝑁𝑆
Assertion
Ref Expression
lgsdir2lem2 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3 𝑁 = (𝑀 + 1)
2 lgsdir2lem2.2 . . . . 5 𝑀 = (𝐾 + 1)
3 lgsdir2lem2.1 . . . . . . 7 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
43simp1i 1008 . . . . . 6 𝐾 ∈ ℤ
5 peano2z 9324 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
64, 5ax-mp 5 . . . . 5 (𝐾 + 1) ∈ ℤ
72, 6eqeltri 2262 . . . 4 𝑀 ∈ ℤ
8 peano2z 9324 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
97, 8ax-mp 5 . . 3 (𝑀 + 1) ∈ ℤ
101, 9eqeltri 2262 . 2 𝑁 ∈ ℤ
113simp2i 1009 . . . 4 2 ∥ (𝐾 + 1)
12 2z 9316 . . . . 5 2 ∈ ℤ
13 dvdsadd 11884 . . . . 5 ((2 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1))))
1412, 6, 13mp2an 426 . . . 4 (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1)))
1511, 14mpbi 145 . . 3 2 ∥ (2 + (𝐾 + 1))
16 zcn 9293 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
174, 16ax-mp 5 . . . . . . . . . 10 𝐾 ∈ ℂ
18 ax-1cn 7939 . . . . . . . . . 10 1 ∈ ℂ
1917, 18addcomi 8136 . . . . . . . . 9 (𝐾 + 1) = (1 + 𝐾)
202, 19eqtri 2210 . . . . . . . 8 𝑀 = (1 + 𝐾)
2120oveq1i 5910 . . . . . . 7 (𝑀 + 1) = ((1 + 𝐾) + 1)
221, 21eqtri 2210 . . . . . 6 𝑁 = ((1 + 𝐾) + 1)
23 df-2 9013 . . . . . . . 8 2 = (1 + 1)
2423oveq1i 5910 . . . . . . 7 (2 + 𝐾) = ((1 + 1) + 𝐾)
2518, 17, 18add32i 8156 . . . . . . 7 ((1 + 𝐾) + 1) = ((1 + 1) + 𝐾)
2624, 25eqtr4i 2213 . . . . . 6 (2 + 𝐾) = ((1 + 𝐾) + 1)
2722, 26eqtr4i 2213 . . . . 5 𝑁 = (2 + 𝐾)
2827oveq1i 5910 . . . 4 (𝑁 + 1) = ((2 + 𝐾) + 1)
29 2cn 9025 . . . . 5 2 ∈ ℂ
3029, 17, 18addassi 8000 . . . 4 ((2 + 𝐾) + 1) = (2 + (𝐾 + 1))
3128, 30eqtri 2210 . . 3 (𝑁 + 1) = (2 + (𝐾 + 1))
3215, 31breqtrri 4048 . 2 2 ∥ (𝑁 + 1)
33 elfzuz2 10065 . . . . 5 ((𝐴 mod 8) ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘0))
34 fzm1 10136 . . . . 5 (𝑁 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3533, 34syl 14 . . . 4 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3635ibi 176 . . 3 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁))
37 elfzuz2 10065 . . . . . . . 8 ((𝐴 mod 8) ∈ (0...𝑀) → 𝑀 ∈ (ℤ‘0))
38 fzm1 10136 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
3937, 38syl 14 . . . . . . 7 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
4039ibi 176 . . . . . 6 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
41 zcn 9293 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
427, 41ax-mp 5 . . . . . . . 8 𝑀 ∈ ℂ
4342, 18, 1mvrraddi 8209 . . . . . . 7 (𝑁 − 1) = 𝑀
4443oveq2i 5911 . . . . . 6 (0...(𝑁 − 1)) = (0...𝑀)
4540, 44eleq2s 2284 . . . . 5 ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
4617, 18, 2mvrraddi 8209 . . . . . . . . 9 (𝑀 − 1) = 𝐾
4746oveq2i 5911 . . . . . . . 8 (0...(𝑀 − 1)) = (0...𝐾)
4847eleq2i 2256 . . . . . . 7 ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ↔ (𝐴 mod 8) ∈ (0...𝐾))
493simp3i 1010 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))
5048, 49biimtrid 152 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) → (𝐴 mod 8) ∈ 𝑆))
51 2nn 9115 . . . . . . . . . . 11 2 ∈ ℕ
52 8nn 9121 . . . . . . . . . . 11 8 ∈ ℕ
53 4z 9318 . . . . . . . . . . . . . 14 4 ∈ ℤ
54 dvdsmul2 11862 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (4 · 2))
5553, 12, 54mp2an 426 . . . . . . . . . . . . 13 2 ∥ (4 · 2)
56 4t2e8 9112 . . . . . . . . . . . . 13 (4 · 2) = 8
5755, 56breqtri 4046 . . . . . . . . . . . 12 2 ∥ 8
58 dvdsmod 11909 . . . . . . . . . . . 12 (((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) ∧ 2 ∥ 8) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
5957, 58mpan2 425 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6051, 52, 59mp3an12 1338 . . . . . . . . . 10 (𝐴 ∈ ℤ → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6160notbid 668 . . . . . . . . 9 (𝐴 ∈ ℤ → (¬ 2 ∥ (𝐴 mod 8) ↔ ¬ 2 ∥ 𝐴))
6261biimpar 297 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ 2 ∥ (𝐴 mod 8))
6311, 2breqtrri 4048 . . . . . . . . 9 2 ∥ 𝑀
64 id 19 . . . . . . . . 9 ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) = 𝑀)
6563, 64breqtrrid 4059 . . . . . . . 8 ((𝐴 mod 8) = 𝑀 → 2 ∥ (𝐴 mod 8))
6662, 65nsyl 629 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ (𝐴 mod 8) = 𝑀)
6766pm2.21d 620 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) ∈ 𝑆))
6850, 67jaod 718 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀) → (𝐴 mod 8) ∈ 𝑆))
6945, 68syl5 32 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → (𝐴 mod 8) ∈ 𝑆))
70 lgsdir2lem2.4 . . . . . 6 𝑁𝑆
71 eleq1 2252 . . . . . 6 ((𝐴 mod 8) = 𝑁 → ((𝐴 mod 8) ∈ 𝑆𝑁𝑆))
7270, 71mpbiri 168 . . . . 5 ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆)
7372a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆))
7469, 73jaod 718 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁) → (𝐴 mod 8) ∈ 𝑆))
7536, 74syl5 32 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))
7610, 32, 753pm3.2i 1177 1 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4021  cfv 5238  (class class class)co 5900  cc 7844  0cc0 7846  1c1 7847   + caddc 7849   · cmul 7851  cmin 8163  cn 8954  2c2 9005  4c4 9007  8c8 9011  cz 9288  cuz 9563  ...cfz 10044   mod cmo 10359  cdvds 11835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-po 4317  df-iso 4318  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-5 9016  df-6 9017  df-7 9018  df-8 9019  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-fz 10045  df-fl 10307  df-mod 10360  df-dvds 11836
This theorem is referenced by:  lgsdir2lem3  14917
  Copyright terms: Public domain W3C validator