ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2lem2 GIF version

Theorem lgsdir2lem2 15550
Description: Lemma for lgsdir2 15554. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
lgsdir2lem2.2 𝑀 = (𝐾 + 1)
lgsdir2lem2.3 𝑁 = (𝑀 + 1)
lgsdir2lem2.4 𝑁𝑆
Assertion
Ref Expression
lgsdir2lem2 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3 𝑁 = (𝑀 + 1)
2 lgsdir2lem2.2 . . . . 5 𝑀 = (𝐾 + 1)
3 lgsdir2lem2.1 . . . . . . 7 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
43simp1i 1009 . . . . . 6 𝐾 ∈ ℤ
5 peano2z 9415 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
64, 5ax-mp 5 . . . . 5 (𝐾 + 1) ∈ ℤ
72, 6eqeltri 2279 . . . 4 𝑀 ∈ ℤ
8 peano2z 9415 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
97, 8ax-mp 5 . . 3 (𝑀 + 1) ∈ ℤ
101, 9eqeltri 2279 . 2 𝑁 ∈ ℤ
113simp2i 1010 . . . 4 2 ∥ (𝐾 + 1)
12 2z 9407 . . . . 5 2 ∈ ℤ
13 dvdsadd 12191 . . . . 5 ((2 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1))))
1412, 6, 13mp2an 426 . . . 4 (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1)))
1511, 14mpbi 145 . . 3 2 ∥ (2 + (𝐾 + 1))
16 zcn 9384 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
174, 16ax-mp 5 . . . . . . . . . 10 𝐾 ∈ ℂ
18 ax-1cn 8025 . . . . . . . . . 10 1 ∈ ℂ
1917, 18addcomi 8223 . . . . . . . . 9 (𝐾 + 1) = (1 + 𝐾)
202, 19eqtri 2227 . . . . . . . 8 𝑀 = (1 + 𝐾)
2120oveq1i 5961 . . . . . . 7 (𝑀 + 1) = ((1 + 𝐾) + 1)
221, 21eqtri 2227 . . . . . 6 𝑁 = ((1 + 𝐾) + 1)
23 df-2 9102 . . . . . . . 8 2 = (1 + 1)
2423oveq1i 5961 . . . . . . 7 (2 + 𝐾) = ((1 + 1) + 𝐾)
2518, 17, 18add32i 8243 . . . . . . 7 ((1 + 𝐾) + 1) = ((1 + 1) + 𝐾)
2624, 25eqtr4i 2230 . . . . . 6 (2 + 𝐾) = ((1 + 𝐾) + 1)
2722, 26eqtr4i 2230 . . . . 5 𝑁 = (2 + 𝐾)
2827oveq1i 5961 . . . 4 (𝑁 + 1) = ((2 + 𝐾) + 1)
29 2cn 9114 . . . . 5 2 ∈ ℂ
3029, 17, 18addassi 8087 . . . 4 ((2 + 𝐾) + 1) = (2 + (𝐾 + 1))
3128, 30eqtri 2227 . . 3 (𝑁 + 1) = (2 + (𝐾 + 1))
3215, 31breqtrri 4074 . 2 2 ∥ (𝑁 + 1)
33 elfzuz2 10158 . . . . 5 ((𝐴 mod 8) ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘0))
34 fzm1 10229 . . . . 5 (𝑁 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3533, 34syl 14 . . . 4 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3635ibi 176 . . 3 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁))
37 elfzuz2 10158 . . . . . . . 8 ((𝐴 mod 8) ∈ (0...𝑀) → 𝑀 ∈ (ℤ‘0))
38 fzm1 10229 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
3937, 38syl 14 . . . . . . 7 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
4039ibi 176 . . . . . 6 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
41 zcn 9384 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
427, 41ax-mp 5 . . . . . . . 8 𝑀 ∈ ℂ
4342, 18, 1mvrraddi 8296 . . . . . . 7 (𝑁 − 1) = 𝑀
4443oveq2i 5962 . . . . . 6 (0...(𝑁 − 1)) = (0...𝑀)
4540, 44eleq2s 2301 . . . . 5 ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
4617, 18, 2mvrraddi 8296 . . . . . . . . 9 (𝑀 − 1) = 𝐾
4746oveq2i 5962 . . . . . . . 8 (0...(𝑀 − 1)) = (0...𝐾)
4847eleq2i 2273 . . . . . . 7 ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ↔ (𝐴 mod 8) ∈ (0...𝐾))
493simp3i 1011 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))
5048, 49biimtrid 152 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) → (𝐴 mod 8) ∈ 𝑆))
51 2nn 9205 . . . . . . . . . . 11 2 ∈ ℕ
52 8nn 9211 . . . . . . . . . . 11 8 ∈ ℕ
53 4z 9409 . . . . . . . . . . . . . 14 4 ∈ ℤ
54 dvdsmul2 12169 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (4 · 2))
5553, 12, 54mp2an 426 . . . . . . . . . . . . 13 2 ∥ (4 · 2)
56 4t2e8 9202 . . . . . . . . . . . . 13 (4 · 2) = 8
5755, 56breqtri 4072 . . . . . . . . . . . 12 2 ∥ 8
58 dvdsmod 12217 . . . . . . . . . . . 12 (((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) ∧ 2 ∥ 8) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
5957, 58mpan2 425 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6051, 52, 59mp3an12 1340 . . . . . . . . . 10 (𝐴 ∈ ℤ → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6160notbid 669 . . . . . . . . 9 (𝐴 ∈ ℤ → (¬ 2 ∥ (𝐴 mod 8) ↔ ¬ 2 ∥ 𝐴))
6261biimpar 297 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ 2 ∥ (𝐴 mod 8))
6311, 2breqtrri 4074 . . . . . . . . 9 2 ∥ 𝑀
64 id 19 . . . . . . . . 9 ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) = 𝑀)
6563, 64breqtrrid 4085 . . . . . . . 8 ((𝐴 mod 8) = 𝑀 → 2 ∥ (𝐴 mod 8))
6662, 65nsyl 629 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ (𝐴 mod 8) = 𝑀)
6766pm2.21d 620 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) ∈ 𝑆))
6850, 67jaod 719 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀) → (𝐴 mod 8) ∈ 𝑆))
6945, 68syl5 32 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → (𝐴 mod 8) ∈ 𝑆))
70 lgsdir2lem2.4 . . . . . 6 𝑁𝑆
71 eleq1 2269 . . . . . 6 ((𝐴 mod 8) = 𝑁 → ((𝐴 mod 8) ∈ 𝑆𝑁𝑆))
7270, 71mpbiri 168 . . . . 5 ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆)
7372a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆))
7469, 73jaod 719 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁) → (𝐴 mod 8) ∈ 𝑆))
7536, 74syl5 32 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))
7610, 32, 753pm3.2i 1178 1 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4047  cfv 5276  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937  cmin 8250  cn 9043  2c2 9094  4c4 9096  8c8 9100  cz 9379  cuz 9655  ...cfz 10137   mod cmo 10474  cdvds 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fl 10420  df-mod 10475  df-dvds 12143
This theorem is referenced by:  lgsdir2lem3  15551
  Copyright terms: Public domain W3C validator