ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl3r GIF version

Theorem simpl3r 1038
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpl3r (((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜓)

Proof of Theorem simpl3r
StepHypRef Expression
1 simp3r 1011 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜓)
21adantr 274 1 (((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  tfisi  4545  ltmul1a  8460  lemul1a  8723  xrbdtri  11166  dvdscmulr  11708  dvdsmulcr  11709  dvdsadd2b  11726
  Copyright terms: Public domain W3C validator