| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp3l 1027 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝐾 ∈
ℤ) | 
| 2 |   | simp1 999 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝑀 ∈
ℤ) | 
| 3 | 1, 2 | zmulcld 9454 | 
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝐾 · 𝑀) ∈ ℤ) | 
| 4 |   | simp2 1000 | 
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝑁 ∈
ℤ) | 
| 5 | 1, 4 | zmulcld 9454 | 
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝐾 · 𝑁) ∈ ℤ) | 
| 6 | 3, 5 | jca 306 | 
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ)) | 
| 7 | 2, 4 | jca 306 | 
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈
ℤ)) | 
| 8 |   | simpr 110 | 
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈
ℤ) | 
| 9 | 1 | adantr 276 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ∈
ℤ) | 
| 10 | 9 | zcnd 9449 | 
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ∈
ℂ) | 
| 11 | 8 | zcnd 9449 | 
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈
ℂ) | 
| 12 | 2 | adantr 276 | 
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈
ℤ) | 
| 13 | 12 | zcnd 9449 | 
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈
ℂ) | 
| 14 | 10, 11, 13 | mul12d 8178 | 
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝐾 · (𝑥 · 𝑀)) = (𝑥 · (𝐾 · 𝑀))) | 
| 15 | 14 | eqeq1d 2205 | 
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁))) | 
| 16 | 11, 13 | mulcld 8047 | 
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑀) ∈ ℂ) | 
| 17 | 4 | adantr 276 | 
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈
ℤ) | 
| 18 | 17 | zcnd 9449 | 
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈
ℂ) | 
| 19 |   | simpl3r 1055 | 
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ≠ 0) | 
| 20 |   | 0z 9337 | 
. . . . . . . 8
⊢ 0 ∈
ℤ | 
| 21 |   | zapne 9400 | 
. . . . . . . 8
⊢ ((𝐾 ∈ ℤ ∧ 0 ∈
ℤ) → (𝐾 # 0
↔ 𝐾 ≠
0)) | 
| 22 | 9, 20, 21 | sylancl 413 | 
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝐾 # 0 ↔ 𝐾 ≠ 0)) | 
| 23 | 19, 22 | mpbird 167 | 
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 # 0) | 
| 24 | 16, 18, 10, 23 | mulcanapd 8688 | 
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁)) | 
| 25 | 15, 24 | bitr3d 190 | 
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁)) | 
| 26 | 25 | biimpd 144 | 
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) → (𝑥 · 𝑀) = 𝑁)) | 
| 27 | 6, 7, 8, 26 | dvds1lem 11967 | 
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) → 𝑀 ∥ 𝑁)) | 
| 28 |   | dvdscmul 11983 | 
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁))) | 
| 29 | 28 | 3adant3r 1237 | 
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀 ∥ 𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁))) | 
| 30 | 27, 29 | impbid 129 | 
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀 ∥ 𝑁)) |