ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdscmulr GIF version

Theorem dvdscmulr 10907
Description: Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdscmulr ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀𝑁))

Proof of Theorem dvdscmulr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3l 971 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝐾 ∈ ℤ)
2 simp1 943 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝑀 ∈ ℤ)
31, 2zmulcld 8844 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝐾 · 𝑀) ∈ ℤ)
4 simp2 944 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝑁 ∈ ℤ)
51, 4zmulcld 8844 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝐾 · 𝑁) ∈ ℤ)
63, 5jca 300 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ))
72, 4jca 300 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8 simpr 108 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
91adantr 270 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ∈ ℤ)
109zcnd 8839 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ∈ ℂ)
118zcnd 8839 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
122adantr 270 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ ℤ)
1312zcnd 8839 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ ℂ)
1410, 11, 13mul12d 7613 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝐾 · (𝑥 · 𝑀)) = (𝑥 · (𝐾 · 𝑀)))
1514eqeq1d 2096 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁)))
1611, 13mulcld 7487 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑀) ∈ ℂ)
174adantr 270 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
1817zcnd 8839 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
19 simpl3r 999 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ≠ 0)
20 0z 8731 . . . . . . . 8 0 ∈ ℤ
21 zapne 8791 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐾 # 0 ↔ 𝐾 ≠ 0))
229, 20, 21sylancl 404 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝐾 # 0 ↔ 𝐾 ≠ 0))
2319, 22mpbird 165 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 # 0)
2416, 18, 10, 23mulcanapd 8104 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
2515, 24bitr3d 188 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
2625biimpd 142 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) → (𝑥 · 𝑀) = 𝑁))
276, 7, 8, 26dvds1lem 10889 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) → 𝑀𝑁))
28 dvdscmul 10905 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
29283adant3r 1171 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
3027, 29impbid 127 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wcel 1438  wne 2255   class class class wbr 3837  (class class class)co 5634  0cc0 7329   · cmul 7334   # cap 8034  cz 8720  cdvds 10878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-inn 8395  df-n0 8644  df-z 8721  df-dvds 10879
This theorem is referenced by:  modmulconst  10910  mulgcd  11087  oddpwdclemxy  11229  oddpwdclemodd  11232
  Copyright terms: Public domain W3C validator