ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdscmulr GIF version

Theorem dvdscmulr 11985
Description: Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdscmulr ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀𝑁))

Proof of Theorem dvdscmulr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1027 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝐾 ∈ ℤ)
2 simp1 999 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝑀 ∈ ℤ)
31, 2zmulcld 9454 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝐾 · 𝑀) ∈ ℤ)
4 simp2 1000 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → 𝑁 ∈ ℤ)
51, 4zmulcld 9454 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝐾 · 𝑁) ∈ ℤ)
63, 5jca 306 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ))
72, 4jca 306 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8 simpr 110 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
91adantr 276 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ∈ ℤ)
109zcnd 9449 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ∈ ℂ)
118zcnd 9449 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
122adantr 276 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ ℤ)
1312zcnd 9449 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑀 ∈ ℂ)
1410, 11, 13mul12d 8178 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝐾 · (𝑥 · 𝑀)) = (𝑥 · (𝐾 · 𝑀)))
1514eqeq1d 2205 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁)))
1611, 13mulcld 8047 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑀) ∈ ℂ)
174adantr 276 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
1817zcnd 9449 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
19 simpl3r 1055 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 ≠ 0)
20 0z 9337 . . . . . . . 8 0 ∈ ℤ
21 zapne 9400 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐾 # 0 ↔ 𝐾 ≠ 0))
229, 20, 21sylancl 413 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (𝐾 # 0 ↔ 𝐾 ≠ 0))
2319, 22mpbird 167 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝐾 # 0)
2416, 18, 10, 23mulcanapd 8688 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
2515, 24bitr3d 190 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
2625biimpd 144 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) → (𝑥 · 𝑀) = 𝑁))
276, 7, 8, 26dvds1lem 11967 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) → 𝑀𝑁))
28 dvdscmul 11983 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
29283adant3r 1237 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
3027, 29impbid 129 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  (class class class)co 5922  0cc0 7879   · cmul 7884   # cap 8608  cz 9326  cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-inn 8991  df-n0 9250  df-z 9327  df-dvds 11953
This theorem is referenced by:  modmulconst  11988  mulgcd  12183  oddpwdclemxy  12337  oddpwdclemodd  12340  pcpremul  12462  4sqlem17  12576  znrrg  14216
  Copyright terms: Public domain W3C validator