ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsadd2b GIF version

Theorem dvdsadd2b 11983
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
dvdsadd2b ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))

Proof of Theorem dvdsadd2b
StepHypRef Expression
1 simpl1 1002 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴 ∈ ℤ)
2 simpl3l 1054 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐶 ∈ ℤ)
3 simpl2 1003 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐵 ∈ ℤ)
4 simpl3r 1055 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴𝐶)
5 simpr 110 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴𝐵)
6 dvds2add 11968 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐶𝐴𝐵) → 𝐴 ∥ (𝐶 + 𝐵)))
76imp 124 . . 3 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴𝐶𝐴𝐵)) → 𝐴 ∥ (𝐶 + 𝐵))
81, 2, 3, 4, 5, 7syl32anc 1257 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴 ∥ (𝐶 + 𝐵))
9 simpl1 1002 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∈ ℤ)
10 simp3l 1027 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℤ)
11 simp2 1000 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℤ)
12 zaddcl 9357 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ)
1310, 11, 12syl2anc 411 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐶 + 𝐵) ∈ ℤ)
1413adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐶 + 𝐵) ∈ ℤ)
1510znegcld 9441 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → -𝐶 ∈ ℤ)
1615adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → -𝐶 ∈ ℤ)
17 simpr 110 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ (𝐶 + 𝐵))
18 simpl3r 1055 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴𝐶)
19 simpl3l 1054 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℤ)
20 dvdsnegb 11951 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐶𝐴 ∥ -𝐶))
219, 19, 20syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐴𝐶𝐴 ∥ -𝐶))
2218, 21mpbid 147 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ -𝐶)
23 dvds2add 11968 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ -𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐶 + 𝐵) ∧ 𝐴 ∥ -𝐶) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶)))
2423imp 124 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ -𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐶 + 𝐵) ∧ 𝐴 ∥ -𝐶)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶))
259, 14, 16, 17, 22, 24syl32anc 1257 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶))
26 simpl2 1003 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℤ)
2712ancoms 268 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ)
2827zcnd 9440 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℂ)
29 zcn 9322 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
3029adantl 277 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
3128, 30negsubd 8336 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = ((𝐶 + 𝐵) − 𝐶))
32 zcn 9322 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3332adantr 276 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
3430, 33pncan2d 8332 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) − 𝐶) = 𝐵)
3531, 34eqtrd 2226 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = 𝐵)
3626, 19, 35syl2anc 411 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) + -𝐶) = 𝐵)
3725, 36breqtrd 4055 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴𝐵)
388, 37impbida 596 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cc 7870   + caddc 7875  cmin 8190  -cneg 8191  cz 9317  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-dvds 11931
This theorem is referenced by:  dvdsaddre2b  11984  3dvdsdec  12006  3dvds2dec  12007  2sqlem3  15204
  Copyright terms: Public domain W3C validator