Proof of Theorem dvdsadd2b
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1002 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∈ ℤ) |
| 2 | | simpl3l 1054 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐶 ∈ ℤ) |
| 3 | | simpl2 1003 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐵 ∈ ℤ) |
| 4 | | simpl3r 1055 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ 𝐶) |
| 5 | | simpr 110 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ 𝐵) |
| 6 | | dvds2add 12007 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 ∥ 𝐶 ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ (𝐶 + 𝐵))) |
| 7 | 6 | imp 124 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 ∥ 𝐶 ∧ 𝐴 ∥ 𝐵)) → 𝐴 ∥ (𝐶 + 𝐵)) |
| 8 | 1, 2, 3, 4, 5, 7 | syl32anc 1257 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ (𝐶 + 𝐵)) |
| 9 | | simpl1 1002 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∈ ℤ) |
| 10 | | simp3l 1027 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → 𝐶 ∈ ℤ) |
| 11 | | simp2 1000 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → 𝐵 ∈ ℤ) |
| 12 | | zaddcl 9383 |
. . . . . 6
⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ) |
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐶 + 𝐵) ∈ ℤ) |
| 14 | 13 | adantr 276 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐶 + 𝐵) ∈ ℤ) |
| 15 | 10 | znegcld 9467 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → -𝐶 ∈ ℤ) |
| 16 | 15 | adantr 276 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → -𝐶 ∈ ℤ) |
| 17 | | simpr 110 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ (𝐶 + 𝐵)) |
| 18 | | simpl3r 1055 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ 𝐶) |
| 19 | | simpl3l 1054 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℤ) |
| 20 | | dvdsnegb 11990 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ 𝐶 ↔ 𝐴 ∥ -𝐶)) |
| 21 | 9, 19, 20 | syl2anc 411 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐴 ∥ 𝐶 ↔ 𝐴 ∥ -𝐶)) |
| 22 | 18, 21 | mpbid 147 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ -𝐶) |
| 23 | | dvds2add 12007 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ -𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐶 + 𝐵) ∧ 𝐴 ∥ -𝐶) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶))) |
| 24 | 23 | imp 124 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ -𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐶 + 𝐵) ∧ 𝐴 ∥ -𝐶)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶)) |
| 25 | 9, 14, 16, 17, 22, 24 | syl32anc 1257 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶)) |
| 26 | | simpl2 1003 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℤ) |
| 27 | 12 | ancoms 268 |
. . . . . . 7
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ) |
| 28 | 27 | zcnd 9466 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℂ) |
| 29 | | zcn 9348 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℂ) |
| 30 | 29 | adantl 277 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈
ℂ) |
| 31 | 28, 30 | negsubd 8360 |
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = ((𝐶 + 𝐵) − 𝐶)) |
| 32 | | zcn 9348 |
. . . . . . 7
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
| 33 | 32 | adantr 276 |
. . . . . 6
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈
ℂ) |
| 34 | 30, 33 | pncan2d 8356 |
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) − 𝐶) = 𝐵) |
| 35 | 31, 34 | eqtrd 2229 |
. . . 4
⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = 𝐵) |
| 36 | 26, 19, 35 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) + -𝐶) = 𝐵) |
| 37 | 25, 36 | breqtrd 4060 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ 𝐵) |
| 38 | 8, 37 | impbida 596 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) |