ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsadd2b GIF version

Theorem dvdsadd2b 12359
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
dvdsadd2b ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))

Proof of Theorem dvdsadd2b
StepHypRef Expression
1 simpl1 1024 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴 ∈ ℤ)
2 simpl3l 1076 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐶 ∈ ℤ)
3 simpl2 1025 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐵 ∈ ℤ)
4 simpl3r 1077 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴𝐶)
5 simpr 110 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴𝐵)
6 dvds2add 12344 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐶𝐴𝐵) → 𝐴 ∥ (𝐶 + 𝐵)))
76imp 124 . . 3 (((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴𝐶𝐴𝐵)) → 𝐴 ∥ (𝐶 + 𝐵))
81, 2, 3, 4, 5, 7syl32anc 1279 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴𝐵) → 𝐴 ∥ (𝐶 + 𝐵))
9 simpl1 1024 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∈ ℤ)
10 simp3l 1049 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℤ)
11 simp2 1022 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℤ)
12 zaddcl 9494 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ)
1310, 11, 12syl2anc 411 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐶 + 𝐵) ∈ ℤ)
1413adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐶 + 𝐵) ∈ ℤ)
1510znegcld 9579 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → -𝐶 ∈ ℤ)
1615adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → -𝐶 ∈ ℤ)
17 simpr 110 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ (𝐶 + 𝐵))
18 simpl3r 1077 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴𝐶)
19 simpl3l 1076 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐶 ∈ ℤ)
20 dvdsnegb 12327 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐶𝐴 ∥ -𝐶))
219, 19, 20syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → (𝐴𝐶𝐴 ∥ -𝐶))
2218, 21mpbid 147 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ -𝐶)
23 dvds2add 12344 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ -𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐶 + 𝐵) ∧ 𝐴 ∥ -𝐶) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶)))
2423imp 124 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ -𝐶 ∈ ℤ) ∧ (𝐴 ∥ (𝐶 + 𝐵) ∧ 𝐴 ∥ -𝐶)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶))
259, 14, 16, 17, 22, 24syl32anc 1279 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴 ∥ ((𝐶 + 𝐵) + -𝐶))
26 simpl2 1025 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐵 ∈ ℤ)
2712ancoms 268 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℤ)
2827zcnd 9578 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 + 𝐵) ∈ ℂ)
29 zcn 9459 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
3029adantl 277 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
3128, 30negsubd 8471 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = ((𝐶 + 𝐵) − 𝐶))
32 zcn 9459 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3332adantr 276 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
3430, 33pncan2d 8467 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) − 𝐶) = 𝐵)
3531, 34eqtrd 2262 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 + 𝐵) + -𝐶) = 𝐵)
3626, 19, 35syl2anc 411 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → ((𝐶 + 𝐵) + -𝐶) = 𝐵)
3725, 36breqtrd 4109 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) ∧ 𝐴 ∥ (𝐶 + 𝐵)) → 𝐴𝐵)
388, 37impbida 598 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  (class class class)co 6007  cc 8005   + caddc 8010  cmin 8325  -cneg 8326  cz 9454  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-dvds 12307
This theorem is referenced by:  dvdsaddre2b  12360  3dvdsdec  12384  3dvds2dec  12385  2sqlem3  15804
  Copyright terms: Public domain W3C validator