| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simprl1 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| simprl1 | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl1 1002 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: prarloc 7570 icodiamlt 11345 summodc 11548 prodmodclem2 11742 prodmodc 11743 | 
| Copyright terms: Public domain | W3C validator |