ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr3 GIF version

Theorem simplr3 1043
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr3 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)

Proof of Theorem simplr3
StepHypRef Expression
1 simpr3 1007 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  netap  7314  prarloclemlt  7553  prarloclemlo  7554  resqrexlemdecn  11156  summodclem2  11525  isumss2  11536  pcdvdstr  12465  ennnfoneleminc  12568  grprcan  13109  mulgnn0dir  13222  mulgdir  13224  mulgass  13229  lmodprop2d  13844  lssintclm  13880  psrbaglesuppg  14158  restopnb  14349  blsscls2  14661
  Copyright terms: Public domain W3C validator