ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr3 GIF version

Theorem simplr3 1065
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr3 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)

Proof of Theorem simplr3
StepHypRef Expression
1 simpr3 1029 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  netap  7448  prarloclemlt  7688  prarloclemlo  7689  ccatswrd  11210  pfxccat3  11274  resqrexlemdecn  11531  summodclem2  11901  isumss2  11912  pcdvdstr  12858  ennnfoneleminc  12990  prdssgrpd  13456  prdsmndd  13489  grprcan  13578  mulgnn0dir  13697  mulgdir  13699  mulgass  13704  lmodprop2d  14320  lssintclm  14356  psrbaglesuppg  14644  restopnb  14863  blsscls2  15175
  Copyright terms: Public domain W3C validator