| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplr3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1010 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: netap 7408 prarloclemlt 7648 prarloclemlo 7649 ccatswrd 11168 pfxccat3 11232 resqrexlemdecn 11489 summodclem2 11859 isumss2 11870 pcdvdstr 12816 ennnfoneleminc 12948 prdssgrpd 13414 prdsmndd 13447 grprcan 13536 mulgnn0dir 13655 mulgdir 13657 mulgass 13662 lmodprop2d 14277 lssintclm 14313 psrbaglesuppg 14601 restopnb 14820 blsscls2 15132 |
| Copyright terms: Public domain | W3C validator |