| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplr3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1008 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: netap 7373 prarloclemlt 7613 prarloclemlo 7614 ccatswrd 11131 resqrexlemdecn 11367 summodclem2 11737 isumss2 11748 pcdvdstr 12694 ennnfoneleminc 12826 prdssgrpd 13291 prdsmndd 13324 grprcan 13413 mulgnn0dir 13532 mulgdir 13534 mulgass 13539 lmodprop2d 14154 lssintclm 14190 psrbaglesuppg 14478 restopnb 14697 blsscls2 15009 |
| Copyright terms: Public domain | W3C validator |