| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplr3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1029 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: netap 7448 prarloclemlt 7688 prarloclemlo 7689 ccatswrd 11210 pfxccat3 11274 resqrexlemdecn 11531 summodclem2 11901 isumss2 11912 pcdvdstr 12858 ennnfoneleminc 12990 prdssgrpd 13456 prdsmndd 13489 grprcan 13578 mulgnn0dir 13697 mulgdir 13699 mulgass 13704 lmodprop2d 14320 lssintclm 14356 psrbaglesuppg 14644 restopnb 14863 blsscls2 15175 |
| Copyright terms: Public domain | W3C validator |