ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr3 GIF version

Theorem simplr3 1043
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr3 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)

Proof of Theorem simplr3
StepHypRef Expression
1 simpr3 1007 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  netap  7339  prarloclemlt  7579  prarloclemlo  7580  resqrexlemdecn  11196  summodclem2  11566  isumss2  11577  pcdvdstr  12523  ennnfoneleminc  12655  prdssgrpd  13119  prdsmndd  13152  grprcan  13241  mulgnn0dir  13360  mulgdir  13362  mulgass  13367  lmodprop2d  13982  lssintclm  14018  psrbaglesuppg  14304  restopnb  14503  blsscls2  14815
  Copyright terms: Public domain W3C validator