ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr3 GIF version

Theorem simplr3 1044
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr3 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)

Proof of Theorem simplr3
StepHypRef Expression
1 simpr3 1008 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜒)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  netap  7373  prarloclemlt  7613  prarloclemlo  7614  ccatswrd  11131  resqrexlemdecn  11367  summodclem2  11737  isumss2  11748  pcdvdstr  12694  ennnfoneleminc  12826  prdssgrpd  13291  prdsmndd  13324  grprcan  13413  mulgnn0dir  13532  mulgdir  13534  mulgass  13539  lmodprop2d  14154  lssintclm  14190  psrbaglesuppg  14478  restopnb  14697  blsscls2  15009
  Copyright terms: Public domain W3C validator