| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplr3 | GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1007 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: netap 7339 prarloclemlt 7579 prarloclemlo 7580 resqrexlemdecn 11196 summodclem2 11566 isumss2 11577 pcdvdstr 12523 ennnfoneleminc 12655 prdssgrpd 13119 prdsmndd 13152 grprcan 13241 mulgnn0dir 13360 mulgdir 13362 mulgass 13367 lmodprop2d 13982 lssintclm 14018 psrbaglesuppg 14304 restopnb 14503 blsscls2 14815 |
| Copyright terms: Public domain | W3C validator |