![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplr3 | GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 1007 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
2 | 1 | adantr 276 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: netap 7314 prarloclemlt 7553 prarloclemlo 7554 resqrexlemdecn 11156 summodclem2 11525 isumss2 11536 pcdvdstr 12465 ennnfoneleminc 12568 grprcan 13109 mulgnn0dir 13222 mulgdir 13224 mulgass 13229 lmodprop2d 13844 lssintclm 13880 psrbaglesuppg 14158 restopnb 14349 blsscls2 14661 |
Copyright terms: Public domain | W3C validator |