| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1002 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simpll1 1041 simprl1 1047 simp1l1 1095 simp2l1 1101 simp3l1 1107 3anandirs 1363 rspc3ev 2904 brcogw 4868 cocan1 5884 oawordi 6585 nnmord 6633 nnmword 6634 dif1en 7009 ac6sfi 7028 ordiso2 7170 difinfsn 7235 ctssdc 7248 2omotaplemap 7411 enq0tr 7589 distrlem4prl 7739 distrlem4pru 7740 ltaprg 7774 aptiprlemu 7795 lelttr 8203 readdcan 8254 addcan 8294 addcan2 8295 ltadd2 8534 ltmul1a 8706 ltmul1 8707 divmulassap 8810 divmulasscomap 8811 lemul1a 8973 xrlelttr 9970 xleadd1a 10037 xlesubadd 10047 icoshftf1o 10155 lincmb01cmp 10167 iccf1o 10168 fztri3or 10203 fzofzim 10356 ioom 10447 modqmuladdim 10556 modqm1p1mod0 10564 q2submod 10574 modqaddmulmod 10580 ltexp2a 10780 exple1 10784 expnlbnd2 10854 nn0ltexp2 10898 nn0leexp2 10899 expcan 10905 fiprsshashgt1 11006 fimaxq 11016 fun2dmnop0 11036 ccatass 11109 swrdlen 11150 swrdfv 11151 swrdswrdlem 11202 ccatopth 11214 maxleastb 11691 maxltsup 11695 xrltmaxsup 11734 xrmaxltsup 11735 xrmaxaddlem 11737 addcn2 11787 mulcn2 11789 dvdsmodexp 12272 dvdsadd2b 12317 dvdsmod 12339 oexpneg 12354 divalglemex 12399 divalg 12401 gcdass 12502 rplpwr 12514 rppwr 12515 nnwodc 12523 coprmdvds2 12581 rpmulgcd2 12583 qredeq 12584 rpdvds 12587 cncongr2 12592 rpexp 12641 znege1 12666 prmdiveq 12724 hashgcdlem 12726 odzdvds 12734 modprmn0modprm0 12745 coprimeprodsq2 12747 pythagtriplem3 12756 pcdvdsb 12809 pcgcd1 12817 qexpz 12841 pockthg 12846 ctinf 12967 nninfdc 12990 unbendc 12991 isnsgrp 13405 issubmnd 13441 ress0g 13442 mulgneg 13643 mulgdirlem 13656 submmulg 13669 subgmulg 13691 nmzsubg 13713 ghmmulg 13759 srg1zr 13916 ring1eq0 13977 mulgass2 13987 rhmdvdsr 14104 rmodislmodlem 14279 rmodislmod 14280 lssintclm 14313 rnglidlrng 14427 2idlcpblrng 14452 neiint 14784 topssnei 14801 iscnp4 14857 cnptopco 14861 cnconst2 14872 cnrest2 14875 cnptoprest 14878 cnpdis 14881 bldisj 15040 blgt0 15041 bl2in 15042 blss2ps 15045 blss2 15046 xblm 15056 blssps 15066 blss 15067 xmetresbl 15079 bdbl 15142 metcnp3 15150 metcnp2 15152 cncfmptc 15235 dvcnp2cntop 15338 dvcn 15339 logdivlti 15520 ltexp2 15580 lgsfcl2 15650 lgsdilem 15671 lgsdirprm 15678 lgsdir 15679 lgsdi 15681 lgsne0 15682 incistruhgr 15855 |
| Copyright terms: Public domain | W3C validator |