| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpll1 1039 simprl1 1045 simp1l1 1093 simp2l1 1099 simp3l1 1105 3anandirs 1361 rspc3ev 2895 brcogw 4851 cocan1 5863 oawordi 6562 nnmord 6610 nnmword 6611 dif1en 6983 ac6sfi 7002 ordiso2 7144 difinfsn 7209 ctssdc 7222 2omotaplemap 7376 enq0tr 7554 distrlem4prl 7704 distrlem4pru 7705 ltaprg 7739 aptiprlemu 7760 lelttr 8168 readdcan 8219 addcan 8259 addcan2 8260 ltadd2 8499 ltmul1a 8671 ltmul1 8672 divmulassap 8775 divmulasscomap 8776 lemul1a 8938 xrlelttr 9935 xleadd1a 10002 xlesubadd 10012 icoshftf1o 10120 lincmb01cmp 10132 iccf1o 10133 fztri3or 10168 fzofzim 10319 ioom 10410 modqmuladdim 10519 modqm1p1mod0 10527 q2submod 10537 modqaddmulmod 10543 ltexp2a 10743 exple1 10747 expnlbnd2 10817 nn0ltexp2 10861 nn0leexp2 10862 expcan 10868 fiprsshashgt1 10969 fimaxq 10979 fun2dmnop0 10999 ccatass 11072 swrdlen 11113 swrdfv 11114 swrdswrdlem 11163 maxleastb 11569 maxltsup 11573 xrltmaxsup 11612 xrmaxltsup 11613 xrmaxaddlem 11615 addcn2 11665 mulcn2 11667 dvdsmodexp 12150 dvdsadd2b 12195 dvdsmod 12217 oexpneg 12232 divalglemex 12277 divalg 12279 gcdass 12380 rplpwr 12392 rppwr 12393 nnwodc 12401 coprmdvds2 12459 rpmulgcd2 12461 qredeq 12462 rpdvds 12465 cncongr2 12470 rpexp 12519 znege1 12544 prmdiveq 12602 hashgcdlem 12604 odzdvds 12612 modprmn0modprm0 12623 coprimeprodsq2 12625 pythagtriplem3 12634 pcdvdsb 12687 pcgcd1 12695 qexpz 12719 pockthg 12724 ctinf 12845 nninfdc 12868 unbendc 12869 isnsgrp 13282 issubmnd 13318 ress0g 13319 mulgneg 13520 mulgdirlem 13533 submmulg 13546 subgmulg 13568 nmzsubg 13590 ghmmulg 13636 srg1zr 13793 ring1eq0 13854 mulgass2 13864 rhmdvdsr 13981 rmodislmodlem 14156 rmodislmod 14157 lssintclm 14190 rnglidlrng 14304 2idlcpblrng 14329 neiint 14661 topssnei 14678 iscnp4 14734 cnptopco 14738 cnconst2 14749 cnrest2 14752 cnptoprest 14755 cnpdis 14758 bldisj 14917 blgt0 14918 bl2in 14919 blss2ps 14922 blss2 14923 xblm 14933 blssps 14943 blss 14944 xmetresbl 14956 bdbl 15019 metcnp3 15027 metcnp2 15029 cncfmptc 15112 dvcnp2cntop 15215 dvcn 15216 logdivlti 15397 ltexp2 15457 lgsfcl2 15527 lgsdilem 15548 lgsdirprm 15555 lgsdir 15556 lgsdi 15558 lgsne0 15559 incistruhgr 15730 |
| Copyright terms: Public domain | W3C validator |