| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpll1 1060 simprl1 1066 simp1l1 1114 simp2l1 1120 simp3l1 1126 3anandirs 1382 rspc3ev 2924 brcogw 4891 cocan1 5917 oawordi 6623 nnmord 6671 nnmword 6672 dif1en 7049 ac6sfi 7068 ordiso2 7210 difinfsn 7275 ctssdc 7288 2omotaplemap 7451 enq0tr 7629 distrlem4prl 7779 distrlem4pru 7780 ltaprg 7814 aptiprlemu 7835 lelttr 8243 readdcan 8294 addcan 8334 addcan2 8335 ltadd2 8574 ltmul1a 8746 ltmul1 8747 divmulassap 8850 divmulasscomap 8851 lemul1a 9013 xrlelttr 10010 xleadd1a 10077 xlesubadd 10087 icoshftf1o 10195 lincmb01cmp 10207 iccf1o 10208 fztri3or 10243 fzofzim 10396 ioom 10488 modqmuladdim 10597 modqm1p1mod0 10605 q2submod 10615 modqaddmulmod 10621 ltexp2a 10821 exple1 10825 expnlbnd2 10895 nn0ltexp2 10939 nn0leexp2 10940 expcan 10946 fiprsshashgt1 11047 fimaxq 11057 fun2dmnop0 11077 ccatass 11151 swrdlen 11192 swrdfv 11193 swrdswrdlem 11244 ccatopth 11256 maxleastb 11733 maxltsup 11737 xrltmaxsup 11776 xrmaxltsup 11777 xrmaxaddlem 11779 addcn2 11829 mulcn2 11831 dvdsmodexp 12314 dvdsadd2b 12359 dvdsmod 12381 oexpneg 12396 divalglemex 12441 divalg 12443 gcdass 12544 rplpwr 12556 rppwr 12557 nnwodc 12565 coprmdvds2 12623 rpmulgcd2 12625 qredeq 12626 rpdvds 12629 cncongr2 12634 rpexp 12683 znege1 12708 prmdiveq 12766 hashgcdlem 12768 odzdvds 12776 modprmn0modprm0 12787 coprimeprodsq2 12789 pythagtriplem3 12798 pcdvdsb 12851 pcgcd1 12859 qexpz 12883 pockthg 12888 ctinf 13009 nninfdc 13032 unbendc 13033 isnsgrp 13447 issubmnd 13483 ress0g 13484 mulgneg 13685 mulgdirlem 13698 submmulg 13711 subgmulg 13733 nmzsubg 13755 ghmmulg 13801 srg1zr 13958 ring1eq0 14019 mulgass2 14029 rhmdvdsr 14147 rmodislmodlem 14322 rmodislmod 14323 lssintclm 14356 rnglidlrng 14470 2idlcpblrng 14495 neiint 14827 topssnei 14844 iscnp4 14900 cnptopco 14904 cnconst2 14915 cnrest2 14918 cnptoprest 14921 cnpdis 14924 bldisj 15083 blgt0 15084 bl2in 15085 blss2ps 15088 blss2 15089 xblm 15099 blssps 15109 blss 15110 xmetresbl 15122 bdbl 15185 metcnp3 15193 metcnp2 15195 cncfmptc 15278 dvcnp2cntop 15381 dvcn 15382 logdivlti 15563 ltexp2 15623 lgsfcl2 15693 lgsdilem 15714 lgsdirprm 15721 lgsdir 15722 lgsdi 15724 lgsne0 15725 incistruhgr 15898 |
| Copyright terms: Public domain | W3C validator |