![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl1 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simpll1 1036 simprl1 1042 simp1l1 1090 simp2l1 1096 simp3l1 1102 3anandirs 1348 rspc3ev 2860 brcogw 4798 cocan1 5790 oawordi 6472 nnmord 6520 nnmword 6521 dif1en 6881 ac6sfi 6900 ordiso2 7036 difinfsn 7101 ctssdc 7114 2omotaplemap 7258 enq0tr 7435 distrlem4prl 7585 distrlem4pru 7586 ltaprg 7620 aptiprlemu 7641 lelttr 8048 readdcan 8099 addcan 8139 addcan2 8140 ltadd2 8378 ltmul1a 8550 ltmul1 8551 divmulassap 8654 divmulasscomap 8655 lemul1a 8817 xrlelttr 9808 xleadd1a 9875 xlesubadd 9885 icoshftf1o 9993 lincmb01cmp 10005 iccf1o 10006 fztri3or 10041 fzofzim 10190 ioom 10263 modqmuladdim 10369 modqm1p1mod0 10377 q2submod 10387 modqaddmulmod 10393 ltexp2a 10574 exple1 10578 expnlbnd2 10648 nn0ltexp2 10691 nn0leexp2 10692 expcan 10698 fiprsshashgt1 10799 fimaxq 10809 maxleastb 11225 maxltsup 11229 xrltmaxsup 11267 xrmaxltsup 11268 xrmaxaddlem 11270 addcn2 11320 mulcn2 11322 dvdsmodexp 11804 dvdsadd2b 11849 dvdsmod 11870 oexpneg 11884 divalglemex 11929 divalg 11931 gcdass 12018 rplpwr 12030 rppwr 12031 nnwodc 12039 coprmdvds2 12095 rpmulgcd2 12097 qredeq 12098 rpdvds 12101 cncongr2 12106 rpexp 12155 znege1 12180 prmdiveq 12238 hashgcdlem 12240 odzdvds 12247 modprmn0modprm0 12258 coprimeprodsq2 12260 pythagtriplem3 12269 pcdvdsb 12321 pcgcd1 12329 qexpz 12352 pockthg 12357 ctinf 12433 nninfdc 12456 unbendc 12457 isnsgrp 12817 issubmnd 12848 ress0g 12849 mulgneg 13006 mulgdirlem 13019 subgmulg 13053 nmzsubg 13075 srg1zr 13175 ring1eq0 13230 mulgass2 13240 rmodislmodlem 13445 rmodislmod 13446 lssintclm 13476 neiint 13730 topssnei 13747 iscnp4 13803 cnptopco 13807 cnconst2 13818 cnrest2 13821 cnptoprest 13824 cnpdis 13827 bldisj 13986 blgt0 13987 bl2in 13988 blss2ps 13991 blss2 13992 xblm 14002 blssps 14012 blss 14013 xmetresbl 14025 bdbl 14088 metcnp3 14096 metcnp2 14098 cncfmptc 14167 dvcnp2cntop 14248 dvcn 14249 logdivlti 14387 ltexp2 14445 lgsfcl2 14492 lgsdilem 14513 lgsdirprm 14520 lgsdir 14521 lgsdi 14523 lgsne0 14524 |
Copyright terms: Public domain | W3C validator |