| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll1 1038 simprl1 1044 simp1l1 1092 simp2l1 1098 simp3l1 1104 3anandirs 1359 rspc3ev 2885 brcogw 4836 cocan1 5837 oawordi 6536 nnmord 6584 nnmword 6585 dif1en 6949 ac6sfi 6968 ordiso2 7110 difinfsn 7175 ctssdc 7188 2omotaplemap 7340 enq0tr 7518 distrlem4prl 7668 distrlem4pru 7669 ltaprg 7703 aptiprlemu 7724 lelttr 8132 readdcan 8183 addcan 8223 addcan2 8224 ltadd2 8463 ltmul1a 8635 ltmul1 8636 divmulassap 8739 divmulasscomap 8740 lemul1a 8902 xrlelttr 9898 xleadd1a 9965 xlesubadd 9975 icoshftf1o 10083 lincmb01cmp 10095 iccf1o 10096 fztri3or 10131 fzofzim 10281 ioom 10367 modqmuladdim 10476 modqm1p1mod0 10484 q2submod 10494 modqaddmulmod 10500 ltexp2a 10700 exple1 10704 expnlbnd2 10774 nn0ltexp2 10818 nn0leexp2 10819 expcan 10825 fiprsshashgt1 10926 fimaxq 10936 maxleastb 11396 maxltsup 11400 xrltmaxsup 11439 xrmaxltsup 11440 xrmaxaddlem 11442 addcn2 11492 mulcn2 11494 dvdsmodexp 11977 dvdsadd2b 12022 dvdsmod 12044 oexpneg 12059 divalglemex 12104 divalg 12106 gcdass 12207 rplpwr 12219 rppwr 12220 nnwodc 12228 coprmdvds2 12286 rpmulgcd2 12288 qredeq 12289 rpdvds 12292 cncongr2 12297 rpexp 12346 znege1 12371 prmdiveq 12429 hashgcdlem 12431 odzdvds 12439 modprmn0modprm0 12450 coprimeprodsq2 12452 pythagtriplem3 12461 pcdvdsb 12514 pcgcd1 12522 qexpz 12546 pockthg 12551 ctinf 12672 nninfdc 12695 unbendc 12696 isnsgrp 13108 issubmnd 13144 ress0g 13145 mulgneg 13346 mulgdirlem 13359 submmulg 13372 subgmulg 13394 nmzsubg 13416 ghmmulg 13462 srg1zr 13619 ring1eq0 13680 mulgass2 13690 rhmdvdsr 13807 rmodislmodlem 13982 rmodislmod 13983 lssintclm 14016 rnglidlrng 14130 2idlcpblrng 14155 neiint 14465 topssnei 14482 iscnp4 14538 cnptopco 14542 cnconst2 14553 cnrest2 14556 cnptoprest 14559 cnpdis 14562 bldisj 14721 blgt0 14722 bl2in 14723 blss2ps 14726 blss2 14727 xblm 14737 blssps 14747 blss 14748 xmetresbl 14760 bdbl 14823 metcnp3 14831 metcnp2 14833 cncfmptc 14916 dvcnp2cntop 15019 dvcn 15020 logdivlti 15201 ltexp2 15261 lgsfcl2 15331 lgsdilem 15352 lgsdirprm 15359 lgsdir 15360 lgsdi 15362 lgsne0 15363 |
| Copyright terms: Public domain | W3C validator |