Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl1 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 987 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | adantr 274 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpll1 1026 simprl1 1032 simp1l1 1080 simp2l1 1086 simp3l1 1092 3anandirs 1338 rspc3ev 2847 brcogw 4773 cocan1 5755 oawordi 6437 nnmord 6485 nnmword 6486 dif1en 6845 ac6sfi 6864 ordiso2 7000 difinfsn 7065 ctssdc 7078 enq0tr 7375 distrlem4prl 7525 distrlem4pru 7526 ltaprg 7560 aptiprlemu 7581 lelttr 7987 readdcan 8038 addcan 8078 addcan2 8079 ltadd2 8317 ltmul1a 8489 ltmul1 8490 divmulassap 8591 divmulasscomap 8592 lemul1a 8753 xrlelttr 9742 xleadd1a 9809 xlesubadd 9819 icoshftf1o 9927 lincmb01cmp 9939 iccf1o 9940 fztri3or 9974 fzofzim 10123 ioom 10196 modqmuladdim 10302 modqm1p1mod0 10310 q2submod 10320 modqaddmulmod 10326 ltexp2a 10507 exple1 10511 expnlbnd2 10580 nn0ltexp2 10623 nn0leexp2 10624 expcan 10629 fiprsshashgt1 10730 fimaxq 10740 maxleastb 11156 maxltsup 11160 xrltmaxsup 11198 xrmaxltsup 11199 xrmaxaddlem 11201 addcn2 11251 mulcn2 11253 dvdsmodexp 11735 dvdsadd2b 11780 dvdsmod 11800 oexpneg 11814 divalglemex 11859 divalg 11861 gcdass 11948 rplpwr 11960 rppwr 11961 nnwodc 11969 coprmdvds2 12025 rpmulgcd2 12027 qredeq 12028 rpdvds 12031 cncongr2 12036 rpexp 12085 znege1 12110 prmdiveq 12168 hashgcdlem 12170 odzdvds 12177 modprmn0modprm0 12188 coprimeprodsq2 12190 pythagtriplem3 12199 pcdvdsb 12251 pcgcd1 12259 qexpz 12282 pockthg 12287 ctinf 12363 nninfdc 12386 unbendc 12387 neiint 12785 topssnei 12802 iscnp4 12858 cnptopco 12862 cnconst2 12873 cnrest2 12876 cnptoprest 12879 cnpdis 12882 bldisj 13041 blgt0 13042 bl2in 13043 blss2ps 13046 blss2 13047 xblm 13057 blssps 13067 blss 13068 xmetresbl 13080 bdbl 13143 metcnp3 13151 metcnp2 13153 cncfmptc 13222 dvcnp2cntop 13303 dvcn 13304 logdivlti 13442 ltexp2 13500 lgsfcl2 13547 lgsdilem 13568 lgsdirprm 13575 lgsdir 13576 lgsdi 13578 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |