| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll1 1038 simprl1 1044 simp1l1 1092 simp2l1 1098 simp3l1 1104 3anandirs 1359 rspc3ev 2885 brcogw 4836 cocan1 5835 oawordi 6528 nnmord 6576 nnmword 6577 dif1en 6941 ac6sfi 6960 ordiso2 7102 difinfsn 7167 ctssdc 7180 2omotaplemap 7326 enq0tr 7503 distrlem4prl 7653 distrlem4pru 7654 ltaprg 7688 aptiprlemu 7709 lelttr 8117 readdcan 8168 addcan 8208 addcan2 8209 ltadd2 8448 ltmul1a 8620 ltmul1 8621 divmulassap 8724 divmulasscomap 8725 lemul1a 8887 xrlelttr 9883 xleadd1a 9950 xlesubadd 9960 icoshftf1o 10068 lincmb01cmp 10080 iccf1o 10081 fztri3or 10116 fzofzim 10266 ioom 10352 modqmuladdim 10461 modqm1p1mod0 10469 q2submod 10479 modqaddmulmod 10485 ltexp2a 10685 exple1 10689 expnlbnd2 10759 nn0ltexp2 10803 nn0leexp2 10804 expcan 10810 fiprsshashgt1 10911 fimaxq 10921 maxleastb 11381 maxltsup 11385 xrltmaxsup 11424 xrmaxltsup 11425 xrmaxaddlem 11427 addcn2 11477 mulcn2 11479 dvdsmodexp 11962 dvdsadd2b 12007 dvdsmod 12029 oexpneg 12044 divalglemex 12089 divalg 12091 gcdass 12192 rplpwr 12204 rppwr 12205 nnwodc 12213 coprmdvds2 12271 rpmulgcd2 12273 qredeq 12274 rpdvds 12277 cncongr2 12282 rpexp 12331 znege1 12356 prmdiveq 12414 hashgcdlem 12416 odzdvds 12424 modprmn0modprm0 12435 coprimeprodsq2 12437 pythagtriplem3 12446 pcdvdsb 12499 pcgcd1 12507 qexpz 12531 pockthg 12536 ctinf 12657 nninfdc 12680 unbendc 12681 isnsgrp 13059 issubmnd 13093 ress0g 13094 mulgneg 13280 mulgdirlem 13293 submmulg 13306 subgmulg 13328 nmzsubg 13350 ghmmulg 13396 srg1zr 13553 ring1eq0 13614 mulgass2 13624 rhmdvdsr 13741 rmodislmodlem 13916 rmodislmod 13917 lssintclm 13950 rnglidlrng 14064 2idlcpblrng 14089 neiint 14391 topssnei 14408 iscnp4 14464 cnptopco 14468 cnconst2 14479 cnrest2 14482 cnptoprest 14485 cnpdis 14488 bldisj 14647 blgt0 14648 bl2in 14649 blss2ps 14652 blss2 14653 xblm 14663 blssps 14673 blss 14674 xmetresbl 14686 bdbl 14749 metcnp3 14757 metcnp2 14759 cncfmptc 14842 dvcnp2cntop 14945 dvcn 14946 logdivlti 15127 ltexp2 15187 lgsfcl2 15257 lgsdilem 15278 lgsdirprm 15285 lgsdir 15286 lgsdi 15288 lgsne0 15289 |
| Copyright terms: Public domain | W3C validator |