| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll1 1038 simprl1 1044 simp1l1 1092 simp2l1 1098 simp3l1 1104 3anandirs 1359 rspc3ev 2885 brcogw 4836 cocan1 5837 oawordi 6536 nnmord 6584 nnmword 6585 dif1en 6949 ac6sfi 6968 ordiso2 7110 difinfsn 7175 ctssdc 7188 2omotaplemap 7342 enq0tr 7520 distrlem4prl 7670 distrlem4pru 7671 ltaprg 7705 aptiprlemu 7726 lelttr 8134 readdcan 8185 addcan 8225 addcan2 8226 ltadd2 8465 ltmul1a 8637 ltmul1 8638 divmulassap 8741 divmulasscomap 8742 lemul1a 8904 xrlelttr 9900 xleadd1a 9967 xlesubadd 9977 icoshftf1o 10085 lincmb01cmp 10097 iccf1o 10098 fztri3or 10133 fzofzim 10283 ioom 10369 modqmuladdim 10478 modqm1p1mod0 10486 q2submod 10496 modqaddmulmod 10502 ltexp2a 10702 exple1 10706 expnlbnd2 10776 nn0ltexp2 10820 nn0leexp2 10821 expcan 10827 fiprsshashgt1 10928 fimaxq 10938 maxleastb 11398 maxltsup 11402 xrltmaxsup 11441 xrmaxltsup 11442 xrmaxaddlem 11444 addcn2 11494 mulcn2 11496 dvdsmodexp 11979 dvdsadd2b 12024 dvdsmod 12046 oexpneg 12061 divalglemex 12106 divalg 12108 gcdass 12209 rplpwr 12221 rppwr 12222 nnwodc 12230 coprmdvds2 12288 rpmulgcd2 12290 qredeq 12291 rpdvds 12294 cncongr2 12299 rpexp 12348 znege1 12373 prmdiveq 12431 hashgcdlem 12433 odzdvds 12441 modprmn0modprm0 12452 coprimeprodsq2 12454 pythagtriplem3 12463 pcdvdsb 12516 pcgcd1 12524 qexpz 12548 pockthg 12553 ctinf 12674 nninfdc 12697 unbendc 12698 isnsgrp 13110 issubmnd 13146 ress0g 13147 mulgneg 13348 mulgdirlem 13361 submmulg 13374 subgmulg 13396 nmzsubg 13418 ghmmulg 13464 srg1zr 13621 ring1eq0 13682 mulgass2 13692 rhmdvdsr 13809 rmodislmodlem 13984 rmodislmod 13985 lssintclm 14018 rnglidlrng 14132 2idlcpblrng 14157 neiint 14489 topssnei 14506 iscnp4 14562 cnptopco 14566 cnconst2 14577 cnrest2 14580 cnptoprest 14583 cnpdis 14586 bldisj 14745 blgt0 14746 bl2in 14747 blss2ps 14750 blss2 14751 xblm 14761 blssps 14771 blss 14772 xmetresbl 14784 bdbl 14847 metcnp3 14855 metcnp2 14857 cncfmptc 14940 dvcnp2cntop 15043 dvcn 15044 logdivlti 15225 ltexp2 15285 lgsfcl2 15355 lgsdilem 15376 lgsdirprm 15383 lgsdir 15384 lgsdi 15386 lgsne0 15387 |
| Copyright terms: Public domain | W3C validator |