Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > speiv | GIF version |
Description: Inference from existential specialization, using implicit substitition. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
speiv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
speiv.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
speiv | ⊢ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | speiv.2 | . 2 ⊢ 𝜓 | |
2 | speiv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimprd 157 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
4 | 3 | spimev 1849 | . 2 ⊢ (𝜓 → ∃𝑥𝜑) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ∃𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |