ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimev GIF version

Theorem spimev 1872
Description: Distinct-variable version of spime 1752. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spimev.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimev (𝜑 → ∃𝑥𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimev
StepHypRef Expression
1 nfv 1539 . 2 𝑥𝜑
2 spimev.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spime 1752 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472
This theorem is referenced by:  speiv  1873  cbvexvw  1932  rnxpid  5100
  Copyright terms: Public domain W3C validator