 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  equvin GIF version

Theorem equvin 1788
 Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equvin (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem equvin
StepHypRef Expression
1 equvini 1685 . 2 (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
2 ax-17 1462 . . 3 (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
3 equtr 1639 . . . 4 (𝑥 = 𝑧 → (𝑧 = 𝑦𝑥 = 𝑦))
43imp 122 . . 3 ((𝑥 = 𝑧𝑧 = 𝑦) → 𝑥 = 𝑦)
52, 4exlimih 1527 . 2 (∃𝑧(𝑥 = 𝑧𝑧 = 𝑦) → 𝑥 = 𝑦)
61, 5impbii 124 1 (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
 Colors of variables: wff set class Syntax hints:   ∧ wa 102   ↔ wb 103  ∃wex 1424 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-i12 1441  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470 This theorem depends on definitions:  df-bi 115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator