![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equvin | GIF version |
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equvin | ⊢ (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equvini 1758 | . 2 ⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | |
2 | ax-17 1526 | . . 3 ⊢ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) | |
3 | equtr 1709 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) | |
4 | 3 | imp 124 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑦) |
5 | 2, 4 | exlimih 1593 | . 2 ⊢ (∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑦) |
6 | 1, 5 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-i12 1507 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |