ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equvin GIF version

Theorem equvin 1863
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equvin (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem equvin
StepHypRef Expression
1 equvini 1758 . 2 (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
2 ax-17 1526 . . 3 (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
3 equtr 1709 . . . 4 (𝑥 = 𝑧 → (𝑧 = 𝑦𝑥 = 𝑦))
43imp 124 . . 3 ((𝑥 = 𝑧𝑧 = 𝑦) → 𝑥 = 𝑦)
52, 4exlimih 1593 . 2 (∃𝑧(𝑥 = 𝑧𝑧 = 𝑦) → 𝑥 = 𝑦)
61, 5impbii 126 1 (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator