| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equvin | GIF version | ||
| Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| equvin | ⊢ (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equvini 1772 | . 2 ⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | |
| 2 | ax-17 1540 | . . 3 ⊢ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) | |
| 3 | equtr 1723 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) | |
| 4 | 3 | imp 124 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑦) | 
| 5 | 2, 4 | exlimih 1607 | . 2 ⊢ (∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦) → 𝑥 = 𝑦) | 
| 6 | 1, 5 | impbii 126 | 1 ⊢ (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |