ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv3 GIF version

Theorem cbv3 1753
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1755 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbv3.1 𝑦𝜑
cbv3.2 𝑥𝜓
cbv3.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbv3 (∀𝑥𝜑 → ∀𝑦𝜓)

Proof of Theorem cbv3
StepHypRef Expression
1 cbv3.1 . . 3 𝑦𝜑
21nfal 1587 . 2 𝑦𝑥𝜑
3 cbv3.2 . . 3 𝑥𝜓
4 cbv3.3 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4spim 1749 . 2 (∀𝑥𝜑𝜓)
62, 5alrimi 1533 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  cbv3h  1754  cbv3v  1755  cbv1  1756  mo2n  2070  mo23  2083  setindis  15459  bdsetindis  15461
  Copyright terms: Public domain W3C validator