![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbv3 | GIF version |
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1755 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbv3.1 | ⊢ Ⅎ𝑦𝜑 |
cbv3.2 | ⊢ Ⅎ𝑥𝜓 |
cbv3.3 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
cbv3 | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv3.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfal 1587 | . 2 ⊢ Ⅎ𝑦∀𝑥𝜑 |
3 | cbv3.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | cbv3.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
5 | 3, 4 | spim 1749 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
6 | 2, 5 | alrimi 1533 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: cbv3h 1754 cbv3v 1755 cbv1 1756 mo2n 2070 mo23 2083 setindis 15459 bdsetindis 15461 |
Copyright terms: Public domain | W3C validator |