| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbv3 | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1758 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbv3.1 | ⊢ Ⅎ𝑦𝜑 |
| cbv3.2 | ⊢ Ⅎ𝑥𝜓 |
| cbv3.3 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| cbv3 | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv3.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfal 1590 | . 2 ⊢ Ⅎ𝑦∀𝑥𝜑 |
| 3 | cbv3.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | cbv3.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | spim 1752 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 6 | 2, 5 | alrimi 1536 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: cbv3h 1757 cbv3v 1758 cbv1 1759 mo2n 2073 mo23 2086 setindis 15613 bdsetindis 15615 |
| Copyright terms: Public domain | W3C validator |