ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv3 GIF version

Theorem cbv3 1766
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1768 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbv3.1 𝑦𝜑
cbv3.2 𝑥𝜓
cbv3.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbv3 (∀𝑥𝜑 → ∀𝑦𝜓)

Proof of Theorem cbv3
StepHypRef Expression
1 cbv3.1 . . 3 𝑦𝜑
21nfal 1600 . 2 𝑦𝑥𝜑
3 cbv3.2 . . 3 𝑥𝜓
4 cbv3.3 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4spim 1762 . 2 (∀𝑥𝜑𝜓)
62, 5alrimi 1546 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  cbv3h  1767  cbv3v  1768  cbv1  1769  mo2n  2083  mo23  2096  setindis  15977  bdsetindis  15979
  Copyright terms: Public domain W3C validator