| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbv3 | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1768 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbv3.1 | ⊢ Ⅎ𝑦𝜑 |
| cbv3.2 | ⊢ Ⅎ𝑥𝜓 |
| cbv3.3 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| cbv3 | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv3.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfal 1600 | . 2 ⊢ Ⅎ𝑦∀𝑥𝜑 |
| 3 | cbv3.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | cbv3.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | spim 1762 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 6 | 2, 5 | alrimi 1546 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: cbv3h 1767 cbv3v 1768 cbv1 1769 mo2n 2083 mo23 2096 setindis 15977 bdsetindis 15979 |
| Copyright terms: Public domain | W3C validator |