ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb1 GIF version

Theorem sb1 1790
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb1 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb1
StepHypRef Expression
1 df-sb 1787 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
21simprbi 275 1 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-sb 1787
This theorem is referenced by:  sbh  1800  sbiedh  1811  sb4a  1825  sb4e  1829  sbcof2  1834  sb4  1856  sb4or  1857  spsbe  1866  sbidm  1875  sb5rf  1876  bj-sbimedh  15907
  Copyright terms: Public domain W3C validator