Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb1 | GIF version |
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb1 | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 1751 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
2 | 1 | simprbi 273 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbh 1764 sbiedh 1775 sb4a 1789 sb4e 1793 sbcof2 1798 sb4 1820 sb4or 1821 spsbe 1830 sbidm 1839 sb5rf 1840 bj-sbimedh 13652 |
Copyright terms: Public domain | W3C validator |