![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbft | GIF version |
Description: Substitution has no effect on a nonfree variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.) |
Ref | Expression |
---|---|
sbft | ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe 1853 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) | |
2 | 19.9t 1653 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
3 | 1, 2 | imbitrid 154 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 → 𝜑)) |
4 | nfr 1529 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
5 | stdpc4 1786 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
6 | 4, 5 | syl6 33 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
7 | 3, 6 | impbid 129 | 1 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1471 ∃wex 1503 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: sbctt 3052 |
Copyright terms: Public domain | W3C validator |