| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbft | GIF version | ||
| Description: Substitution has no effect on a nonfree variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.) |
| Ref | Expression |
|---|---|
| sbft | ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe 1888 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 2 | 19.9t 1688 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | imbitrid 154 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 → 𝜑)) |
| 4 | nfr 1564 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 5 | stdpc4 1821 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 6 | 4, 5 | syl6 33 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
| 7 | 3, 6 | impbid 129 | 1 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 Ⅎwnf 1506 ∃wex 1538 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-i9 1576 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: sbctt 3095 |
| Copyright terms: Public domain | W3C validator |