ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg2 GIF version

Theorem issubrg2 13974
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b 𝐵 = (Base‘𝑅)
issubrg2.o 1 = (1r𝑅)
issubrg2.t · = (.r𝑅)
Assertion
Ref Expression
issubrg2 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   1 (𝑥,𝑦)

Proof of Theorem issubrg2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13960 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 issubrg2.o . . . 4 1 = (1r𝑅)
32subrg1cl 13962 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)
4 issubrg2.t . . . . . 6 · = (.r𝑅)
54subrgmcl 13966 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
653expb 1206 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 · 𝑦) ∈ 𝐴)
76ralrimivva 2587 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
81, 3, 73jca 1179 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴))
9 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Ring)
10 simpr1 1005 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅))
11 eqid 2204 . . . . . . 7 (𝑅s 𝐴) = (𝑅s 𝐴)
1211subgbas 13485 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
1310, 12syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅s 𝐴)))
14 eqidd 2205 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → (𝑅s 𝐴) = (𝑅s 𝐴))
15 eqidd 2205 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g𝑅))
16 id 19 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
17 subgrcl 13486 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp)
1814, 15, 16, 17ressplusgd 12932 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
1910, 18syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
2011, 4ressmulrg 12948 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝑅) ∧ 𝑅 ∈ Grp) → · = (.r‘(𝑅s 𝐴)))
2110, 17, 20syl2anc2 412 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · = (.r‘(𝑅s 𝐴)))
2211subggrp 13484 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (𝑅s 𝐴) ∈ Grp)
2310, 22syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Grp)
24 simpr3 1007 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
25 oveq1 5950 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
2625eleq1d 2273 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴))
27 oveq2 5951 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2827eleq1d 2273 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴))
2926, 28rspc2v 2889 . . . . . . 7 ((𝑢𝐴𝑣𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴))
3024, 29syl5com 29 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴))
31303impib 1203 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴)
32 issubrg2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3332subgss 13481 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴𝐵)
3410, 33syl 14 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴𝐵)
3534sseld 3191 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢𝐴𝑢𝐵))
3634sseld 3191 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣𝐴𝑣𝐵))
3734sseld 3191 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤𝐴𝑤𝐵))
3835, 36, 373anim123d 1331 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3938imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
4032, 4ringass 13749 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
4140adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
4239, 41syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
43 eqid 2204 . . . . . . . 8 (+g𝑅) = (+g𝑅)
4432, 43, 4ringdi 13751 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4544adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4639, 45syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4732, 43, 4ringdir 13752 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4847adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4939, 48syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
50 simpr2 1006 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 1𝐴)
5135imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → 𝑢𝐵)
5232, 4, 2ringlidm 13756 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑢𝐵) → ( 1 · 𝑢) = 𝑢)
5352adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐵) → ( 1 · 𝑢) = 𝑢)
5451, 53syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → ( 1 · 𝑢) = 𝑢)
5532, 4, 2ringridm 13757 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑢 · 1 ) = 𝑢)
5655adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐵) → (𝑢 · 1 ) = 𝑢)
5751, 56syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → (𝑢 · 1 ) = 𝑢)
5813, 19, 21, 23, 31, 42, 46, 49, 50, 54, 57isringd 13774 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Ring)
5934, 50jca 306 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝐴𝐵1𝐴))
6032, 2issubrg 13954 . . . 4 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))
619, 58, 59, 60syl21anbrc 1184 . . 3 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRing‘𝑅))
6261ex 115 . 2 (𝑅 ∈ Ring → ((𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRing‘𝑅)))
638, 62impbid2 143 1 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wral 2483  wss 3165  cfv 5270  (class class class)co 5943  Basecbs 12803  s cress 12804  +gcplusg 12880  .rcmulr 12881  Grpcgrp 13303  SubGrpcsubg 13474  1rcur 13692  Ringcrg 13729  SubRingcsubrg 13950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-subg 13477  df-mgp 13654  df-ur 13693  df-ring 13731  df-subrg 13952
This theorem is referenced by:  subrgintm  13976  issubrg3  13980  issubrgd  14185  cnsubrglem  14313
  Copyright terms: Public domain W3C validator