ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg2 GIF version

Theorem issubrg2 13740
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b 𝐵 = (Base‘𝑅)
issubrg2.o 1 = (1r𝑅)
issubrg2.t · = (.r𝑅)
Assertion
Ref Expression
issubrg2 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   1 (𝑥,𝑦)

Proof of Theorem issubrg2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13726 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 issubrg2.o . . . 4 1 = (1r𝑅)
32subrg1cl 13728 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)
4 issubrg2.t . . . . . 6 · = (.r𝑅)
54subrgmcl 13732 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
653expb 1206 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 · 𝑦) ∈ 𝐴)
76ralrimivva 2576 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
81, 3, 73jca 1179 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴))
9 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Ring)
10 simpr1 1005 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅))
11 eqid 2193 . . . . . . 7 (𝑅s 𝐴) = (𝑅s 𝐴)
1211subgbas 13251 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
1310, 12syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅s 𝐴)))
14 eqidd 2194 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → (𝑅s 𝐴) = (𝑅s 𝐴))
15 eqidd 2194 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g𝑅))
16 id 19 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
17 subgrcl 13252 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp)
1814, 15, 16, 17ressplusgd 12749 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
1910, 18syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
2011, 4ressmulrg 12765 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝑅) ∧ 𝑅 ∈ Grp) → · = (.r‘(𝑅s 𝐴)))
2110, 17, 20syl2anc2 412 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · = (.r‘(𝑅s 𝐴)))
2211subggrp 13250 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (𝑅s 𝐴) ∈ Grp)
2310, 22syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Grp)
24 simpr3 1007 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
25 oveq1 5926 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
2625eleq1d 2262 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴))
27 oveq2 5927 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2827eleq1d 2262 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴))
2926, 28rspc2v 2878 . . . . . . 7 ((𝑢𝐴𝑣𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴))
3024, 29syl5com 29 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴))
31303impib 1203 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴)
32 issubrg2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3332subgss 13247 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴𝐵)
3410, 33syl 14 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴𝐵)
3534sseld 3179 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢𝐴𝑢𝐵))
3634sseld 3179 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣𝐴𝑣𝐵))
3734sseld 3179 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤𝐴𝑤𝐵))
3835, 36, 373anim123d 1330 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3938imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
4032, 4ringass 13515 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
4140adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
4239, 41syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
43 eqid 2193 . . . . . . . 8 (+g𝑅) = (+g𝑅)
4432, 43, 4ringdi 13517 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4544adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4639, 45syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4732, 43, 4ringdir 13518 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4847adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4939, 48syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
50 simpr2 1006 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 1𝐴)
5135imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → 𝑢𝐵)
5232, 4, 2ringlidm 13522 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑢𝐵) → ( 1 · 𝑢) = 𝑢)
5352adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐵) → ( 1 · 𝑢) = 𝑢)
5451, 53syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → ( 1 · 𝑢) = 𝑢)
5532, 4, 2ringridm 13523 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑢 · 1 ) = 𝑢)
5655adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐵) → (𝑢 · 1 ) = 𝑢)
5751, 56syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → (𝑢 · 1 ) = 𝑢)
5813, 19, 21, 23, 31, 42, 46, 49, 50, 54, 57isringd 13540 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Ring)
5934, 50jca 306 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝐴𝐵1𝐴))
6032, 2issubrg 13720 . . . 4 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))
619, 58, 59, 60syl21anbrc 1184 . . 3 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRing‘𝑅))
6261ex 115 . 2 (𝑅 ∈ Ring → ((𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRing‘𝑅)))
638, 62impbid2 143 1 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  +gcplusg 12698  .rcmulr 12699  Grpcgrp 13075  SubGrpcsubg 13240  1rcur 13458  Ringcrg 13495  SubRingcsubrg 13716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-subg 13243  df-mgp 13420  df-ur 13459  df-ring 13497  df-subrg 13718
This theorem is referenced by:  subrgintm  13742  issubrg3  13746  issubrgd  13951  cnsubrglem  14079
  Copyright terms: Public domain W3C validator