Step | Hyp | Ref
| Expression |
1 | | subrgsubg 13359 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
2 | | issubrg2.o |
. . . 4
⊢ 1 =
(1r‘𝑅) |
3 | 2 | subrg1cl 13361 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 ∈ 𝐴) |
4 | | issubrg2.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
5 | 4 | subrgmcl 13365 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
6 | 5 | 3expb 1204 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 · 𝑦) ∈ 𝐴) |
7 | 6 | ralrimivva 2559 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
8 | 1, 3, 7 | 3jca 1177 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) |
9 | | simpl 109 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Ring) |
10 | | simpr1 1003 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅)) |
11 | | eqid 2177 |
. . . . . . 7
⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) |
12 | 11 | subgbas 13048 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
13 | 10, 12 | syl 14 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
14 | | eqidd 2178 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴)) |
15 | | eqidd 2178 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) →
(+g‘𝑅) =
(+g‘𝑅)) |
16 | | id 19 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
17 | | subgrcl 13049 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp) |
18 | 14, 15, 16, 17 | ressplusgd 12590 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) →
(+g‘𝑅) =
(+g‘(𝑅
↾s 𝐴))) |
19 | 10, 18 | syl 14 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝐴))) |
20 | 11, 4 | ressmulrg 12606 |
. . . . . 6
⊢ ((𝐴 ∈ (SubGrp‘𝑅) ∧ 𝑅 ∈ Grp) → · =
(.r‘(𝑅
↾s 𝐴))) |
21 | 10, 17, 20 | syl2anc2 412 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · =
(.r‘(𝑅
↾s 𝐴))) |
22 | 11 | subggrp 13047 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
23 | 10, 22 | syl 14 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Grp) |
24 | | simpr3 1005 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
25 | | oveq1 5885 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦)) |
26 | 25 | eleq1d 2246 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴)) |
27 | | oveq2 5886 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣)) |
28 | 27 | eleq1d 2246 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴)) |
29 | 26, 28 | rspc2v 2856 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴)) |
30 | 24, 29 | syl5com 29 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴)) |
31 | 30 | 3impib 1201 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴) |
32 | | issubrg2.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
33 | 32 | subgss 13044 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ⊆ 𝐵) |
34 | 10, 33 | syl 14 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ⊆ 𝐵) |
35 | 34 | sseld 3156 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵)) |
36 | 34 | sseld 3156 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵)) |
37 | 34 | sseld 3156 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵)) |
38 | 35, 36, 37 | 3anim123d 1319 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
39 | 38 | imp 124 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) |
40 | 32, 4 | ringass 13210 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
41 | 40 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
42 | 39, 41 | syldan 282 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
43 | | eqid 2177 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
44 | 32, 43, 4 | ringdi 13212 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
45 | 44 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
46 | 39, 45 | syldan 282 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
47 | 32, 43, 4 | ringdir 13213 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
48 | 47 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
49 | 39, 48 | syldan 282 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
50 | | simpr2 1004 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 1 ∈ 𝐴) |
51 | 35 | imp 124 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐵) |
52 | 32, 4, 2 | ringlidm 13217 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵) → ( 1 · 𝑢) = 𝑢) |
53 | 52 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐵) → ( 1 · 𝑢) = 𝑢) |
54 | 51, 53 | syldan 282 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴) → ( 1 · 𝑢) = 𝑢) |
55 | 32, 4, 2 | ringridm 13218 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵) → (𝑢 · 1 ) = 𝑢) |
56 | 55 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐵) → (𝑢 · 1 ) = 𝑢) |
57 | 51, 56 | syldan 282 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴) → (𝑢 · 1 ) = 𝑢) |
58 | 13, 19, 21, 23, 31, 42, 46, 49, 50, 54, 57 | isringd 13231 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Ring) |
59 | 34, 50 | jca 306 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴)) |
60 | 32, 2 | issubrg 13353 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) |
61 | 9, 58, 59, 60 | syl21anbrc 1182 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRing‘𝑅)) |
62 | 61 | ex 115 |
. 2
⊢ (𝑅 ∈ Ring → ((𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRing‘𝑅))) |
63 | 8, 62 | impbid2 143 |
1
⊢ (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) |