ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg2 GIF version

Theorem issubrg2 13300
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b 𝐡 = (Baseβ€˜π‘…)
issubrg2.o 1 = (1rβ€˜π‘…)
issubrg2.t Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
issubrg2 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝑅,𝑦   π‘₯, Β· ,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   1 (π‘₯,𝑦)

Proof of Theorem issubrg2
Dummy variables 𝑣 𝑒 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13286 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
2 issubrg2.o . . . 4 1 = (1rβ€˜π‘…)
32subrg1cl 13288 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 ∈ 𝐴)
4 issubrg2.t . . . . . 6 Β· = (.rβ€˜π‘…)
54subrgmcl 13292 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ Β· 𝑦) ∈ 𝐴)
653expb 1204 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ Β· 𝑦) ∈ 𝐴)
76ralrimivva 2559 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)
81, 3, 73jca 1177 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴))
9 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝑅 ∈ Ring)
10 simpr1 1003 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
11 eqid 2177 . . . . . . 7 (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴)
1211subgbas 12969 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜(𝑅 β†Ύs 𝐴)))
1310, 12syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 = (Baseβ€˜(𝑅 β†Ύs 𝐴)))
14 eqidd 2178 . . . . . . 7 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴))
15 eqidd 2178 . . . . . . 7 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (+gβ€˜π‘…) = (+gβ€˜π‘…))
16 id 19 . . . . . . 7 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
17 subgrcl 12970 . . . . . . 7 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝑅 ∈ Grp)
1814, 15, 16, 17ressplusgd 12579 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (+gβ€˜π‘…) = (+gβ€˜(𝑅 β†Ύs 𝐴)))
1910, 18syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (+gβ€˜π‘…) = (+gβ€˜(𝑅 β†Ύs 𝐴)))
2011, 4ressmulrg 12595 . . . . . 6 ((𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 𝑅 ∈ Grp) β†’ Β· = (.rβ€˜(𝑅 β†Ύs 𝐴)))
2110, 17, 20syl2anc2 412 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ Β· = (.rβ€˜(𝑅 β†Ύs 𝐴)))
2211subggrp 12968 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
2310, 22syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
24 simpr3 1005 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)
25 oveq1 5879 . . . . . . . . 9 (π‘₯ = 𝑒 β†’ (π‘₯ Β· 𝑦) = (𝑒 Β· 𝑦))
2625eleq1d 2246 . . . . . . . 8 (π‘₯ = 𝑒 β†’ ((π‘₯ Β· 𝑦) ∈ 𝐴 ↔ (𝑒 Β· 𝑦) ∈ 𝐴))
27 oveq2 5880 . . . . . . . . 9 (𝑦 = 𝑣 β†’ (𝑒 Β· 𝑦) = (𝑒 Β· 𝑣))
2827eleq1d 2246 . . . . . . . 8 (𝑦 = 𝑣 β†’ ((𝑒 Β· 𝑦) ∈ 𝐴 ↔ (𝑒 Β· 𝑣) ∈ 𝐴))
2926, 28rspc2v 2854 . . . . . . 7 ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴 β†’ (𝑒 Β· 𝑣) ∈ 𝐴))
3024, 29syl5com 29 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (𝑒 Β· 𝑣) ∈ 𝐴))
31303impib 1201 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (𝑒 Β· 𝑣) ∈ 𝐴)
32 issubrg2.b . . . . . . . . . . 11 𝐡 = (Baseβ€˜π‘…)
3332subgss 12965 . . . . . . . . . 10 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝐴 βŠ† 𝐡)
3410, 33syl 14 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 βŠ† 𝐡)
3534sseld 3154 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑒 ∈ 𝐴 β†’ 𝑒 ∈ 𝐡))
3634sseld 3154 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑣 ∈ 𝐴 β†’ 𝑣 ∈ 𝐡))
3734sseld 3154 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑀 ∈ 𝐴 β†’ 𝑀 ∈ 𝐡))
3835, 36, 373anim123d 1319 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴) β†’ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)))
3938imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡))
4032, 4ringass 13130 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
4140adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
4239, 41syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
43 eqid 2177 . . . . . . . 8 (+gβ€˜π‘…) = (+gβ€˜π‘…)
4432, 43, 4ringdi 13132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4544adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4639, 45syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4732, 43, 4ringdir 13133 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
4847adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
4939, 48syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
50 simpr2 1004 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 1 ∈ 𝐴)
5135imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ 𝑒 ∈ 𝐡)
5232, 4, 2ringlidm 13137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑒 ∈ 𝐡) β†’ ( 1 Β· 𝑒) = 𝑒)
5352adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐡) β†’ ( 1 Β· 𝑒) = 𝑒)
5451, 53syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ ( 1 Β· 𝑒) = 𝑒)
5532, 4, 2ringridm 13138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑒 ∈ 𝐡) β†’ (𝑒 Β· 1 ) = 𝑒)
5655adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐡) β†’ (𝑒 Β· 1 ) = 𝑒)
5751, 56syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ (𝑒 Β· 1 ) = 𝑒)
5813, 19, 21, 23, 31, 42, 46, 49, 50, 54, 57isringd 13151 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑅 β†Ύs 𝐴) ∈ Ring)
5934, 50jca 306 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴))
6032, 2issubrg 13280 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)))
619, 58, 59, 60syl21anbrc 1182 . . 3 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 ∈ (SubRingβ€˜π‘…))
6261ex 115 . 2 (𝑅 ∈ Ring β†’ ((𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴) β†’ 𝐴 ∈ (SubRingβ€˜π‘…)))
638, 62impbid2 143 1 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455   βŠ† wss 3129  β€˜cfv 5215  (class class class)co 5872  Basecbs 12454   β†Ύs cress 12455  +gcplusg 12528  .rcmulr 12529  Grpcgrp 12809  SubGrpcsubg 12958  1rcur 13073  Ringcrg 13110  SubRingcsubrg 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-ltxr 7993  df-inn 8916  df-2 8974  df-3 8975  df-ndx 12457  df-slot 12458  df-base 12460  df-sets 12461  df-iress 12462  df-plusg 12541  df-mulr 12542  df-0g 12695  df-mgm 12707  df-sgrp 12740  df-mnd 12750  df-subg 12961  df-mgp 13062  df-ur 13074  df-ring 13112  df-subrg 13278
This theorem is referenced by:  subrgintm  13302  issubrg3  13306  cnsubrglem  13343
  Copyright terms: Public domain W3C validator