ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg2 GIF version

Theorem issubrg2 13368
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b 𝐡 = (Baseβ€˜π‘…)
issubrg2.o 1 = (1rβ€˜π‘…)
issubrg2.t Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
issubrg2 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝑅,𝑦   π‘₯, Β· ,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   1 (π‘₯,𝑦)

Proof of Theorem issubrg2
Dummy variables 𝑣 𝑒 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13354 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
2 issubrg2.o . . . 4 1 = (1rβ€˜π‘…)
32subrg1cl 13356 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 ∈ 𝐴)
4 issubrg2.t . . . . . 6 Β· = (.rβ€˜π‘…)
54subrgmcl 13360 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ Β· 𝑦) ∈ 𝐴)
653expb 1204 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (π‘₯ Β· 𝑦) ∈ 𝐴)
76ralrimivva 2559 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)
81, 3, 73jca 1177 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴))
9 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝑅 ∈ Ring)
10 simpr1 1003 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
11 eqid 2177 . . . . . . 7 (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴)
1211subgbas 13044 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜(𝑅 β†Ύs 𝐴)))
1310, 12syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 = (Baseβ€˜(𝑅 β†Ύs 𝐴)))
14 eqidd 2178 . . . . . . 7 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (𝑅 β†Ύs 𝐴) = (𝑅 β†Ύs 𝐴))
15 eqidd 2178 . . . . . . 7 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (+gβ€˜π‘…) = (+gβ€˜π‘…))
16 id 19 . . . . . . 7 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
17 subgrcl 13045 . . . . . . 7 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝑅 ∈ Grp)
1814, 15, 16, 17ressplusgd 12590 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (+gβ€˜π‘…) = (+gβ€˜(𝑅 β†Ύs 𝐴)))
1910, 18syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (+gβ€˜π‘…) = (+gβ€˜(𝑅 β†Ύs 𝐴)))
2011, 4ressmulrg 12606 . . . . . 6 ((𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 𝑅 ∈ Grp) β†’ Β· = (.rβ€˜(𝑅 β†Ύs 𝐴)))
2110, 17, 20syl2anc2 412 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ Β· = (.rβ€˜(𝑅 β†Ύs 𝐴)))
2211subggrp 13043 . . . . . 6 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
2310, 22syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑅 β†Ύs 𝐴) ∈ Grp)
24 simpr3 1005 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)
25 oveq1 5885 . . . . . . . . 9 (π‘₯ = 𝑒 β†’ (π‘₯ Β· 𝑦) = (𝑒 Β· 𝑦))
2625eleq1d 2246 . . . . . . . 8 (π‘₯ = 𝑒 β†’ ((π‘₯ Β· 𝑦) ∈ 𝐴 ↔ (𝑒 Β· 𝑦) ∈ 𝐴))
27 oveq2 5886 . . . . . . . . 9 (𝑦 = 𝑣 β†’ (𝑒 Β· 𝑦) = (𝑒 Β· 𝑣))
2827eleq1d 2246 . . . . . . . 8 (𝑦 = 𝑣 β†’ ((𝑒 Β· 𝑦) ∈ 𝐴 ↔ (𝑒 Β· 𝑣) ∈ 𝐴))
2926, 28rspc2v 2856 . . . . . . 7 ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴 β†’ (𝑒 Β· 𝑣) ∈ 𝐴))
3024, 29syl5com 29 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (𝑒 Β· 𝑣) ∈ 𝐴))
31303impib 1201 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) β†’ (𝑒 Β· 𝑣) ∈ 𝐴)
32 issubrg2.b . . . . . . . . . . 11 𝐡 = (Baseβ€˜π‘…)
3332subgss 13040 . . . . . . . . . 10 (𝐴 ∈ (SubGrpβ€˜π‘…) β†’ 𝐴 βŠ† 𝐡)
3410, 33syl 14 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 βŠ† 𝐡)
3534sseld 3156 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑒 ∈ 𝐴 β†’ 𝑒 ∈ 𝐡))
3634sseld 3156 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑣 ∈ 𝐴 β†’ 𝑣 ∈ 𝐡))
3734sseld 3156 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑀 ∈ 𝐴 β†’ 𝑀 ∈ 𝐡))
3835, 36, 373anim123d 1319 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ ((𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴) β†’ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)))
3938imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡))
4032, 4ringass 13205 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
4140adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
4239, 41syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ ((𝑒 Β· 𝑣) Β· 𝑀) = (𝑒 Β· (𝑣 Β· 𝑀)))
43 eqid 2177 . . . . . . . 8 (+gβ€˜π‘…) = (+gβ€˜π‘…)
4432, 43, 4ringdi 13207 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4544adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4639, 45syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ (𝑒 Β· (𝑣(+gβ€˜π‘…)𝑀)) = ((𝑒 Β· 𝑣)(+gβ€˜π‘…)(𝑒 Β· 𝑀)))
4732, 43, 4ringdir 13208 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
4847adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑀 ∈ 𝐡)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
4939, 48syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑀 ∈ 𝐴)) β†’ ((𝑒(+gβ€˜π‘…)𝑣) Β· 𝑀) = ((𝑒 Β· 𝑀)(+gβ€˜π‘…)(𝑣 Β· 𝑀)))
50 simpr2 1004 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 1 ∈ 𝐴)
5135imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ 𝑒 ∈ 𝐡)
5232, 4, 2ringlidm 13212 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑒 ∈ 𝐡) β†’ ( 1 Β· 𝑒) = 𝑒)
5352adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐡) β†’ ( 1 Β· 𝑒) = 𝑒)
5451, 53syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ ( 1 Β· 𝑒) = 𝑒)
5532, 4, 2ringridm 13213 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑒 ∈ 𝐡) β†’ (𝑒 Β· 1 ) = 𝑒)
5655adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐡) β†’ (𝑒 Β· 1 ) = 𝑒)
5751, 56syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) ∧ 𝑒 ∈ 𝐴) β†’ (𝑒 Β· 1 ) = 𝑒)
5813, 19, 21, 23, 31, 42, 46, 49, 50, 54, 57isringd 13226 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝑅 β†Ύs 𝐴) ∈ Ring)
5934, 50jca 306 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴))
6032, 2issubrg 13348 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)))
619, 58, 59, 60syl21anbrc 1182 . . 3 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)) β†’ 𝐴 ∈ (SubRingβ€˜π‘…))
6261ex 115 . 2 (𝑅 ∈ Ring β†’ ((𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴) β†’ 𝐴 ∈ (SubRingβ€˜π‘…)))
638, 62impbid2 143 1 (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455   βŠ† wss 3131  β€˜cfv 5218  (class class class)co 5878  Basecbs 12465   β†Ύs cress 12466  +gcplusg 12539  .rcmulr 12540  Grpcgrp 12883  SubGrpcsubg 13033  1rcur 13148  Ringcrg 13185  SubRingcsubrg 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-3 8982  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-mulr 12553  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-subg 13036  df-mgp 13137  df-ur 13149  df-ring 13187  df-subrg 13346
This theorem is referenced by:  subrgintm  13370  issubrg3  13374  issubrgd  13544  cnsubrglem  13614
  Copyright terms: Public domain W3C validator