ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg2 GIF version

Theorem issubrg2 13373
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubrg2.b 𝐵 = (Base‘𝑅)
issubrg2.o 1 = (1r𝑅)
issubrg2.t · = (.r𝑅)
Assertion
Ref Expression
issubrg2 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   1 (𝑥,𝑦)

Proof of Theorem issubrg2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13359 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 issubrg2.o . . . 4 1 = (1r𝑅)
32subrg1cl 13361 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 1𝐴)
4 issubrg2.t . . . . . 6 · = (.r𝑅)
54subrgmcl 13365 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
653expb 1204 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 · 𝑦) ∈ 𝐴)
76ralrimivva 2559 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
81, 3, 73jca 1177 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴))
9 simpl 109 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Ring)
10 simpr1 1003 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅))
11 eqid 2177 . . . . . . 7 (𝑅s 𝐴) = (𝑅s 𝐴)
1211subgbas 13048 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
1310, 12syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅s 𝐴)))
14 eqidd 2178 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → (𝑅s 𝐴) = (𝑅s 𝐴))
15 eqidd 2178 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g𝑅))
16 id 19 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
17 subgrcl 13049 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp)
1814, 15, 16, 17ressplusgd 12590 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
1910, 18syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
2011, 4ressmulrg 12606 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝑅) ∧ 𝑅 ∈ Grp) → · = (.r‘(𝑅s 𝐴)))
2110, 17, 20syl2anc2 412 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · = (.r‘(𝑅s 𝐴)))
2211subggrp 13047 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (𝑅s 𝐴) ∈ Grp)
2310, 22syl 14 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Grp)
24 simpr3 1005 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
25 oveq1 5885 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
2625eleq1d 2246 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴))
27 oveq2 5886 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2827eleq1d 2246 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴))
2926, 28rspc2v 2856 . . . . . . 7 ((𝑢𝐴𝑣𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴))
3024, 29syl5com 29 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴))
31303impib 1201 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴)
32 issubrg2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3332subgss 13044 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴𝐵)
3410, 33syl 14 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴𝐵)
3534sseld 3156 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢𝐴𝑢𝐵))
3634sseld 3156 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣𝐴𝑣𝐵))
3734sseld 3156 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤𝐴𝑤𝐵))
3835, 36, 373anim123d 1319 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3938imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
4032, 4ringass 13210 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
4140adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
4239, 41syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
43 eqid 2177 . . . . . . . 8 (+g𝑅) = (+g𝑅)
4432, 43, 4ringdi 13212 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4544adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4639, 45syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4732, 43, 4ringdir 13213 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4847adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4939, 48syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
50 simpr2 1004 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 1𝐴)
5135imp 124 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → 𝑢𝐵)
5232, 4, 2ringlidm 13217 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑢𝐵) → ( 1 · 𝑢) = 𝑢)
5352adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐵) → ( 1 · 𝑢) = 𝑢)
5451, 53syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → ( 1 · 𝑢) = 𝑢)
5532, 4, 2ringridm 13218 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑢𝐵) → (𝑢 · 1 ) = 𝑢)
5655adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐵) → (𝑢 · 1 ) = 𝑢)
5751, 56syldan 282 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴) → (𝑢 · 1 ) = 𝑢)
5813, 19, 21, 23, 31, 42, 46, 49, 50, 54, 57isringd 13231 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Ring)
5934, 50jca 306 . . . 4 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝐴𝐵1𝐴))
6032, 2issubrg 13353 . . . 4 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))
619, 58, 59, 60syl21anbrc 1182 . . 3 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRing‘𝑅))
6261ex 115 . 2 (𝑅 ∈ Ring → ((𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRing‘𝑅)))
638, 62impbid2 143 1 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ 1𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  wss 3131  cfv 5218  (class class class)co 5878  Basecbs 12465  s cress 12466  +gcplusg 12539  .rcmulr 12540  Grpcgrp 12884  SubGrpcsubg 13037  1rcur 13153  Ringcrg 13190  SubRingcsubrg 13349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-3 8982  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-mulr 12553  df-0g 12713  df-mgm 12782  df-sgrp 12815  df-mnd 12825  df-subg 13040  df-mgp 13142  df-ur 13154  df-ring 13192  df-subrg 13351
This theorem is referenced by:  subrgintm  13375  issubrg3  13379  issubrgd  13550  cnsubrglem  13621
  Copyright terms: Public domain W3C validator