| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmfmhm | GIF version | ||
| Description: The function fulfilling the conditions of mhmmnd 13648 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ghmgrp.x | ⊢ 𝑋 = (Base‘𝐺) |
| ghmgrp.y | ⊢ 𝑌 = (Base‘𝐻) |
| ghmgrp.p | ⊢ + = (+g‘𝐺) |
| ghmgrp.q | ⊢ ⨣ = (+g‘𝐻) |
| ghmgrp.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| mhmmnd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Ref | Expression |
|---|---|
| mhmfmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmmnd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | ghmgrp.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 3 | ghmgrp.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | ghmgrp.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
| 5 | ghmgrp.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | ghmgrp.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
| 7 | ghmgrp.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 8 | 2, 3, 4, 5, 6, 7, 1 | mhmmnd 13648 | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 9 | fof 5547 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
| 10 | 7, 9 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 11 | 2 | 3expb 1228 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 12 | 11 | ralrimivva 2612 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 13 | eqid 2229 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 14 | 2, 3, 4, 5, 6, 7, 1, 13 | mhmid 13647 | . . 3 ⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
| 15 | 10, 12, 14 | 3jca 1201 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻))) |
| 16 | eqid 2229 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 17 | 3, 4, 5, 6, 13, 16 | ismhm 13489 | . 2 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻)))) |
| 18 | 1, 8, 15, 17 | syl21anbrc 1206 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⟶wf 5313 –onto→wfo 5315 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 0gc0g 13284 Mndcmnd 13444 MndHom cmhm 13485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-mhm 13487 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |