ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmfmhm GIF version

Theorem mhmfmhm 13649
Description: The function fulfilling the conditions of mhmmnd 13648 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
mhmmnd.3 (𝜑𝐺 ∈ Mnd)
Assertion
Ref Expression
mhmfmhm (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦

Proof of Theorem mhmfmhm
StepHypRef Expression
1 mhmmnd.3 . 2 (𝜑𝐺 ∈ Mnd)
2 ghmgrp.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
3 ghmgrp.x . . 3 𝑋 = (Base‘𝐺)
4 ghmgrp.y . . 3 𝑌 = (Base‘𝐻)
5 ghmgrp.p . . 3 + = (+g𝐺)
6 ghmgrp.q . . 3 = (+g𝐻)
7 ghmgrp.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
82, 3, 4, 5, 6, 7, 1mhmmnd 13648 . 2 (𝜑𝐻 ∈ Mnd)
9 fof 5547 . . . 4 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
107, 9syl 14 . . 3 (𝜑𝐹:𝑋𝑌)
1123expb 1228 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1211ralrimivva 2612 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
13 eqid 2229 . . . 4 (0g𝐺) = (0g𝐺)
142, 3, 4, 5, 6, 7, 1, 13mhmid 13647 . . 3 (𝜑 → (𝐹‘(0g𝐺)) = (0g𝐻))
1510, 12, 143jca 1201 . 2 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝐺)) = (0g𝐻)))
16 eqid 2229 . . 3 (0g𝐻) = (0g𝐻)
173, 4, 5, 6, 13, 16ismhm 13489 . 2 (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝐺)) = (0g𝐻))))
181, 8, 15, 17syl21anbrc 1206 1 (𝜑𝐹 ∈ (𝐺 MndHom 𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wf 5313  ontowfo 5315  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Mndcmnd 13444   MndHom cmhm 13485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator