![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mhmfmhm | GIF version |
Description: The function fulfilling the conditions of mhmmnd 13024 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
ghmgrp.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ghmgrp.x | ⊢ 𝑋 = (Base‘𝐺) |
ghmgrp.y | ⊢ 𝑌 = (Base‘𝐻) |
ghmgrp.p | ⊢ + = (+g‘𝐺) |
ghmgrp.q | ⊢ ⨣ = (+g‘𝐻) |
ghmgrp.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
mhmmnd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Ref | Expression |
---|---|
mhmfmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmmnd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | ghmgrp.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
3 | ghmgrp.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
4 | ghmgrp.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
5 | ghmgrp.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | ghmgrp.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
7 | ghmgrp.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
8 | 2, 3, 4, 5, 6, 7, 1 | mhmmnd 13024 | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
9 | fof 5453 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
10 | 7, 9 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
11 | 2 | 3expb 1206 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
12 | 11 | ralrimivva 2572 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
13 | eqid 2189 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
14 | 2, 3, 4, 5, 6, 7, 1, 13 | mhmid 13023 | . . 3 ⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
15 | 10, 12, 14 | 3jca 1179 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻))) |
16 | eqid 2189 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
17 | 3, 4, 5, 6, 13, 16 | ismhm 12879 | . 2 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻)))) |
18 | 1, 8, 15, 17 | syl21anbrc 1184 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ⟶wf 5227 –onto→wfo 5229 ‘cfv 5231 (class class class)co 5891 Basecbs 12480 +gcplusg 12555 0gc0g 12727 Mndcmnd 12843 MndHom cmhm 12875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1re 7923 ax-addrcl 7926 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-fo 5237 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-map 6668 df-inn 8938 df-2 8996 df-ndx 12483 df-slot 12484 df-base 12486 df-plusg 12568 df-0g 12729 df-mgm 12798 df-sgrp 12831 df-mnd 12844 df-mhm 12877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |