| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmfmhm | GIF version | ||
| Description: The function fulfilling the conditions of mhmmnd 13527 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmgrp.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ghmgrp.x | ⊢ 𝑋 = (Base‘𝐺) |
| ghmgrp.y | ⊢ 𝑌 = (Base‘𝐻) |
| ghmgrp.p | ⊢ + = (+g‘𝐺) |
| ghmgrp.q | ⊢ ⨣ = (+g‘𝐻) |
| ghmgrp.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| mhmmnd.3 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Ref | Expression |
|---|---|
| mhmfmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmmnd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | ghmgrp.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 3 | ghmgrp.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | ghmgrp.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
| 5 | ghmgrp.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | ghmgrp.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
| 7 | ghmgrp.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 8 | 2, 3, 4, 5, 6, 7, 1 | mhmmnd 13527 | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 9 | fof 5510 | . . . 4 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
| 10 | 7, 9 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 11 | 2 | 3expb 1207 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 12 | 11 | ralrimivva 2589 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 13 | eqid 2206 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 14 | 2, 3, 4, 5, 6, 7, 1, 13 | mhmid 13526 | . . 3 ⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = (0g‘𝐻)) |
| 15 | 10, 12, 14 | 3jca 1180 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻))) |
| 16 | eqid 2206 | . . 3 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 17 | 3, 4, 5, 6, 13, 16 | ismhm 13368 | . 2 ⊢ (𝐹 ∈ (𝐺 MndHom 𝐻) ↔ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝐺)) = (0g‘𝐻)))) |
| 18 | 1, 8, 15, 17 | syl21anbrc 1185 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⟶wf 5276 –onto→wfo 5278 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 +gcplusg 12984 0gc0g 13163 Mndcmnd 13323 MndHom cmhm 13364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fo 5286 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-map 6750 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-mhm 13366 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |