Proof of Theorem subsubrg
| Step | Hyp | Ref
| Expression |
| 1 | | subrgrcl 13782 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
| 2 | 1 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝑅 ∈ Ring) |
| 3 | | eqid 2196 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 4 | 3 | subrgss 13778 |
. . . . . . . 8
⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆)) |
| 5 | 4 | adantl 277 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆)) |
| 6 | | subsubrg.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| 7 | 6 | subrgbas 13786 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 8 | 7 | adantr 276 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 = (Base‘𝑆)) |
| 9 | 5, 8 | sseqtrrd 3222 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ 𝐴) |
| 10 | 6 | oveq1i 5932 |
. . . . . . 7
⊢ (𝑆 ↾s 𝐵) = ((𝑅 ↾s 𝐴) ↾s 𝐵) |
| 11 | | ressabsg 12754 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴 ∧ 𝑅 ∈ Ring) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 12 | 11 | 3expa 1205 |
. . . . . . . 8
⊢ (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑅 ∈ Ring) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 13 | 1, 12 | mpidan 423 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 14 | 10, 13 | eqtrid 2241 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴) → (𝑆 ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 15 | 9, 14 | syldan 282 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆 ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 16 | | eqid 2196 |
. . . . . . 7
⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) |
| 17 | 16 | subrgring 13780 |
. . . . . 6
⊢ (𝐵 ∈ (SubRing‘𝑆) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 18 | 17 | adantl 277 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 19 | 15, 18 | eqeltrrd 2274 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑅 ↾s 𝐵) ∈ Ring) |
| 20 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 21 | 20 | subrgss 13778 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 22 | 21 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 ⊆ (Base‘𝑅)) |
| 23 | 9, 22 | sstrd 3193 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑅)) |
| 24 | | eqid 2196 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 25 | 6, 24 | subrg1 13787 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑆)) |
| 26 | 25 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r‘𝑅) = (1r‘𝑆)) |
| 27 | | eqid 2196 |
. . . . . . . 8
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 28 | 27 | subrg1cl 13785 |
. . . . . . 7
⊢ (𝐵 ∈ (SubRing‘𝑆) →
(1r‘𝑆)
∈ 𝐵) |
| 29 | 28 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r‘𝑆) ∈ 𝐵) |
| 30 | 26, 29 | eqeltrd 2273 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r‘𝑅) ∈ 𝐵) |
| 31 | 23, 30 | jca 306 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐵)) |
| 32 | 20, 24 | issubrg 13777 |
. . . 4
⊢ (𝐵 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐵))) |
| 33 | 2, 19, 31, 32 | syl21anbrc 1184 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ∈ (SubRing‘𝑅)) |
| 34 | 33, 9 | jca 306 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) |
| 35 | 6 | subrgring 13780 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 36 | 35 | adantr 276 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → 𝑆 ∈ Ring) |
| 37 | 14 | adantrl 478 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → (𝑆 ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 38 | | eqid 2196 |
. . . . . 6
⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) |
| 39 | 38 | subrgring 13780 |
. . . . 5
⊢ (𝐵 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐵) ∈ Ring) |
| 40 | 39 | ad2antrl 490 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → (𝑅 ↾s 𝐵) ∈ Ring) |
| 41 | 37, 40 | eqeltrd 2273 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → (𝑆 ↾s 𝐵) ∈ Ring) |
| 42 | | simprr 531 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ⊆ 𝐴) |
| 43 | 7 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → 𝐴 = (Base‘𝑆)) |
| 44 | 42, 43 | sseqtrd 3221 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ⊆ (Base‘𝑆)) |
| 45 | 25 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → (1r‘𝑅) = (1r‘𝑆)) |
| 46 | 24 | subrg1cl 13785 |
. . . . . 6
⊢ (𝐵 ∈ (SubRing‘𝑅) →
(1r‘𝑅)
∈ 𝐵) |
| 47 | 46 | ad2antrl 490 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → (1r‘𝑅) ∈ 𝐵) |
| 48 | 45, 47 | eqeltrrd 2274 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → (1r‘𝑆) ∈ 𝐵) |
| 49 | 44, 48 | jca 306 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵)) |
| 50 | 3, 27 | issubrg 13777 |
. . 3
⊢ (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆 ↾s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r‘𝑆) ∈ 𝐵))) |
| 51 | 36, 41, 49, 50 | syl21anbrc 1184 |
. 2
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ∈ (SubRing‘𝑆)) |
| 52 | 34, 51 | impbida 596 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |