ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubrg GIF version

Theorem subsubrg 13925
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
subsubrg.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrg (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))

Proof of Theorem subsubrg
StepHypRef Expression
1 subrgrcl 13906 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
21adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝑅 ∈ Ring)
3 eqid 2204 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
43subrgss 13902 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆))
54adantl 277 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆))
6 subsubrg.s . . . . . . . . 9 𝑆 = (𝑅s 𝐴)
76subrgbas 13910 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
87adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 = (Base‘𝑆))
95, 8sseqtrrd 3231 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵𝐴)
106oveq1i 5944 . . . . . . 7 (𝑆s 𝐵) = ((𝑅s 𝐴) ↾s 𝐵)
11 ressabsg 12827 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴𝑅 ∈ Ring) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
12113expa 1205 . . . . . . . 8 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) ∧ 𝑅 ∈ Ring) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
131, 12mpidan 423 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
1410, 13eqtrid 2249 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → (𝑆s 𝐵) = (𝑅s 𝐵))
159, 14syldan 282 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) = (𝑅s 𝐵))
16 eqid 2204 . . . . . . 7 (𝑆s 𝐵) = (𝑆s 𝐵)
1716subrgring 13904 . . . . . 6 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
1817adantl 277 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) ∈ Ring)
1915, 18eqeltrrd 2282 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑅s 𝐵) ∈ Ring)
20 eqid 2204 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
2120subrgss 13902 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2221adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 ⊆ (Base‘𝑅))
239, 22sstrd 3202 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑅))
24 eqid 2204 . . . . . . . 8 (1r𝑅) = (1r𝑅)
256, 24subrg1 13911 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
2625adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) = (1r𝑆))
27 eqid 2204 . . . . . . . 8 (1r𝑆) = (1r𝑆)
2827subrg1cl 13909 . . . . . . 7 (𝐵 ∈ (SubRing‘𝑆) → (1r𝑆) ∈ 𝐵)
2928adantl 277 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑆) ∈ 𝐵)
3026, 29eqeltrd 2281 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) ∈ 𝐵)
3123, 30jca 306 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵))
3220, 24issubrg 13901 . . . 4 (𝐵 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵)))
332, 19, 31, 32syl21anbrc 1184 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ∈ (SubRing‘𝑅))
3433, 9jca 306 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴))
356subrgring 13904 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3635adantr 276 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝑆 ∈ Ring)
3714adantrl 478 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) = (𝑅s 𝐵))
38 eqid 2204 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
3938subrgring 13904 . . . . 5 (𝐵 ∈ (SubRing‘𝑅) → (𝑅s 𝐵) ∈ Ring)
4039ad2antrl 490 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑅s 𝐵) ∈ Ring)
4137, 40eqeltrd 2281 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) ∈ Ring)
42 simprr 531 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵𝐴)
437adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐴 = (Base‘𝑆))
4442, 43sseqtrd 3230 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ⊆ (Base‘𝑆))
4525adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) = (1r𝑆))
4624subrg1cl 13909 . . . . . 6 (𝐵 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐵)
4746ad2antrl 490 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) ∈ 𝐵)
4845, 47eqeltrrd 2282 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑆) ∈ 𝐵)
4944, 48jca 306 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
503, 27issubrg 13901 . . 3 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
5136, 41, 49, 50syl21anbrc 1184 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ∈ (SubRing‘𝑆))
5234, 51impbida 596 1 (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wss 3165  cfv 5268  (class class class)co 5934  Basecbs 12751  s cress 12752  1rcur 13639  Ringcrg 13676  SubRingcsubrg 13897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759  df-plusg 12841  df-mulr 12842  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-subg 13424  df-mgp 13601  df-ur 13640  df-ring 13678  df-subrg 13899
This theorem is referenced by:  subsubrg2  13926
  Copyright terms: Public domain W3C validator