ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubrg GIF version

Theorem subsubrg 13877
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
subsubrg.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrg (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))

Proof of Theorem subsubrg
StepHypRef Expression
1 subrgrcl 13858 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
21adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝑅 ∈ Ring)
3 eqid 2196 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
43subrgss 13854 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆))
54adantl 277 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆))
6 subsubrg.s . . . . . . . . 9 𝑆 = (𝑅s 𝐴)
76subrgbas 13862 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
87adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 = (Base‘𝑆))
95, 8sseqtrrd 3223 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵𝐴)
106oveq1i 5935 . . . . . . 7 (𝑆s 𝐵) = ((𝑅s 𝐴) ↾s 𝐵)
11 ressabsg 12779 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴𝑅 ∈ Ring) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
12113expa 1205 . . . . . . . 8 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) ∧ 𝑅 ∈ Ring) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
131, 12mpidan 423 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
1410, 13eqtrid 2241 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴) → (𝑆s 𝐵) = (𝑅s 𝐵))
159, 14syldan 282 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) = (𝑅s 𝐵))
16 eqid 2196 . . . . . . 7 (𝑆s 𝐵) = (𝑆s 𝐵)
1716subrgring 13856 . . . . . 6 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
1817adantl 277 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑆s 𝐵) ∈ Ring)
1915, 18eqeltrrd 2274 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝑅s 𝐵) ∈ Ring)
20 eqid 2196 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
2120subrgss 13854 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2221adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐴 ⊆ (Base‘𝑅))
239, 22sstrd 3194 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑅))
24 eqid 2196 . . . . . . . 8 (1r𝑅) = (1r𝑅)
256, 24subrg1 13863 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
2625adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) = (1r𝑆))
27 eqid 2196 . . . . . . . 8 (1r𝑆) = (1r𝑆)
2827subrg1cl 13861 . . . . . . 7 (𝐵 ∈ (SubRing‘𝑆) → (1r𝑆) ∈ 𝐵)
2928adantl 277 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑆) ∈ 𝐵)
3026, 29eqeltrd 2273 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (1r𝑅) ∈ 𝐵)
3123, 30jca 306 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵))
3220, 24issubrg 13853 . . . 4 (𝐵 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐵)))
332, 19, 31, 32syl21anbrc 1184 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → 𝐵 ∈ (SubRing‘𝑅))
3433, 9jca 306 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝐵 ∈ (SubRing‘𝑆)) → (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴))
356subrgring 13856 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3635adantr 276 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝑆 ∈ Ring)
3714adantrl 478 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) = (𝑅s 𝐵))
38 eqid 2196 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
3938subrgring 13856 . . . . 5 (𝐵 ∈ (SubRing‘𝑅) → (𝑅s 𝐵) ∈ Ring)
4039ad2antrl 490 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑅s 𝐵) ∈ Ring)
4137, 40eqeltrd 2273 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) ∈ Ring)
42 simprr 531 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵𝐴)
437adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐴 = (Base‘𝑆))
4442, 43sseqtrd 3222 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ⊆ (Base‘𝑆))
4525adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) = (1r𝑆))
4624subrg1cl 13861 . . . . . 6 (𝐵 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐵)
4746ad2antrl 490 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑅) ∈ 𝐵)
4845, 47eqeltrrd 2274 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (1r𝑆) ∈ 𝐵)
4944, 48jca 306 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵))
503, 27issubrg 13853 . . 3 (𝐵 ∈ (SubRing‘𝑆) ↔ ((𝑆 ∈ Ring ∧ (𝑆s 𝐵) ∈ Ring) ∧ (𝐵 ⊆ (Base‘𝑆) ∧ (1r𝑆) ∈ 𝐵)))
5136, 41, 49, 50syl21anbrc 1184 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ∈ (SubRing‘𝑆))
5234, 51impbida 596 1 (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  1rcur 13591  Ringcrg 13628  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-subg 13376  df-mgp 13553  df-ur 13592  df-ring 13630  df-subrg 13851
This theorem is referenced by:  subsubrg2  13878
  Copyright terms: Public domain W3C validator