| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idmhm | GIF version | ||
| Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.) |
| Ref | Expression |
|---|---|
| idmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| idmhm | ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mnd) | |
| 2 | f1oi 5554 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 3 | f1of 5516 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
| 4 | 2, 3 | mp1i 10 | . . 3 ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵):𝐵⟶𝐵) |
| 5 | idmhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | eqid 2204 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 7 | 5, 6 | mndcl 13173 | . . . . . . 7 ⊢ ((𝑀 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 8 | 7 | 3expb 1206 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 9 | fvresi 5767 | . . . . . 6 ⊢ ((𝑎(+g‘𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) | |
| 10 | 8, 9 | syl 14 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
| 11 | fvresi 5767 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
| 12 | fvresi 5767 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
| 13 | 11, 12 | oveqan12d 5953 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
| 14 | 13 | adantl 277 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
| 15 | 10, 14 | eqtr4d 2240 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
| 16 | 15 | ralrimivva 2587 | . . 3 ⊢ (𝑀 ∈ Mnd → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
| 17 | eqid 2204 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 18 | 5, 17 | mndidcl 13180 | . . . 4 ⊢ (𝑀 ∈ Mnd → (0g‘𝑀) ∈ 𝐵) |
| 19 | fvresi 5767 | . . . 4 ⊢ ((0g‘𝑀) ∈ 𝐵 → (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑀 ∈ Mnd → (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)) |
| 21 | 4, 16, 20 | 3jca 1179 | . 2 ⊢ (𝑀 ∈ Mnd → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀))) |
| 22 | 5, 5, 6, 6, 17, 17 | ismhm 13211 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀) ↔ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)))) |
| 23 | 1, 1, 21, 22 | syl21anbrc 1184 | 1 ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ∀wral 2483 I cid 4333 ↾ cres 4675 ⟶wf 5264 –1-1-onto→wf1o 5267 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 0gc0g 13006 Mndcmnd 13166 MndHom cmhm 13207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-map 6727 df-inn 9019 df-2 9077 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-mhm 13209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |