| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > idmhm | GIF version | ||
| Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.) | 
| Ref | Expression | 
|---|---|
| idmhm.b | ⊢ 𝐵 = (Base‘𝑀) | 
| Ref | Expression | 
|---|---|
| idmhm | ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mnd) | |
| 2 | f1oi 5542 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 3 | f1of 5504 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
| 4 | 2, 3 | mp1i 10 | . . 3 ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵):𝐵⟶𝐵) | 
| 5 | idmhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | eqid 2196 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 7 | 5, 6 | mndcl 13064 | . . . . . . 7 ⊢ ((𝑀 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) | 
| 8 | 7 | 3expb 1206 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) | 
| 9 | fvresi 5755 | . . . . . 6 ⊢ ((𝑎(+g‘𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) | |
| 10 | 8, 9 | syl 14 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) | 
| 11 | fvresi 5755 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
| 12 | fvresi 5755 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
| 13 | 11, 12 | oveqan12d 5941 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) | 
| 14 | 13 | adantl 277 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) | 
| 15 | 10, 14 | eqtr4d 2232 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) | 
| 16 | 15 | ralrimivva 2579 | . . 3 ⊢ (𝑀 ∈ Mnd → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) | 
| 17 | eqid 2196 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 18 | 5, 17 | mndidcl 13071 | . . . 4 ⊢ (𝑀 ∈ Mnd → (0g‘𝑀) ∈ 𝐵) | 
| 19 | fvresi 5755 | . . . 4 ⊢ ((0g‘𝑀) ∈ 𝐵 → (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑀 ∈ Mnd → (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)) | 
| 21 | 4, 16, 20 | 3jca 1179 | . 2 ⊢ (𝑀 ∈ Mnd → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀))) | 
| 22 | 5, 5, 6, 6, 17, 17 | ismhm 13093 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀) ↔ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)))) | 
| 23 | 1, 1, 21, 22 | syl21anbrc 1184 | 1 ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 I cid 4323 ↾ cres 4665 ⟶wf 5254 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Mndcmnd 13057 MndHom cmhm 13089 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |