| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idmhm | GIF version | ||
| Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.) |
| Ref | Expression |
|---|---|
| idmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| idmhm | ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mnd) | |
| 2 | f1oi 5610 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 3 | f1of 5571 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
| 4 | 2, 3 | mp1i 10 | . . 3 ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵):𝐵⟶𝐵) |
| 5 | idmhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | eqid 2229 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 7 | 5, 6 | mndcl 13451 | . . . . . . 7 ⊢ ((𝑀 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 8 | 7 | 3expb 1228 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 9 | fvresi 5831 | . . . . . 6 ⊢ ((𝑎(+g‘𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) | |
| 10 | 8, 9 | syl 14 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
| 11 | fvresi 5831 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
| 12 | fvresi 5831 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
| 13 | 11, 12 | oveqan12d 6019 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
| 14 | 13 | adantl 277 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
| 15 | 10, 14 | eqtr4d 2265 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
| 16 | 15 | ralrimivva 2612 | . . 3 ⊢ (𝑀 ∈ Mnd → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
| 17 | eqid 2229 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 18 | 5, 17 | mndidcl 13458 | . . . 4 ⊢ (𝑀 ∈ Mnd → (0g‘𝑀) ∈ 𝐵) |
| 19 | fvresi 5831 | . . . 4 ⊢ ((0g‘𝑀) ∈ 𝐵 → (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)) | |
| 20 | 18, 19 | syl 14 | . . 3 ⊢ (𝑀 ∈ Mnd → (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)) |
| 21 | 4, 16, 20 | 3jca 1201 | . 2 ⊢ (𝑀 ∈ Mnd → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀))) |
| 22 | 5, 5, 6, 6, 17, 17 | ismhm 13489 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀) ↔ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g‘𝑀)) = (0g‘𝑀)))) |
| 23 | 1, 1, 21, 22 | syl21anbrc 1206 | 1 ⊢ (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 I cid 4378 ↾ cres 4720 ⟶wf 5313 –1-1-onto→wf1o 5316 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 0gc0g 13284 Mndcmnd 13444 MndHom cmhm 13485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-mhm 13487 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |