ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idmhm GIF version

Theorem idmhm 13497
Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
Hypothesis
Ref Expression
idmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
idmhm (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))

Proof of Theorem idmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝑀 ∈ Mnd → 𝑀 ∈ Mnd)
2 f1oi 5610 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
3 f1of 5571 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
42, 3mp1i 10 . . 3 (𝑀 ∈ Mnd → ( I ↾ 𝐵):𝐵𝐵)
5 idmhm.b . . . . . . . 8 𝐵 = (Base‘𝑀)
6 eqid 2229 . . . . . . . 8 (+g𝑀) = (+g𝑀)
75, 6mndcl 13451 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
873expb 1228 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
9 fvresi 5831 . . . . . 6 ((𝑎(+g𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
108, 9syl 14 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
11 fvresi 5831 . . . . . . 7 (𝑎𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎)
12 fvresi 5831 . . . . . . 7 (𝑏𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏)
1311, 12oveqan12d 6019 . . . . . 6 ((𝑎𝐵𝑏𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1413adantl 277 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1510, 14eqtr4d 2265 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
1615ralrimivva 2612 . . 3 (𝑀 ∈ Mnd → ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
17 eqid 2229 . . . . 5 (0g𝑀) = (0g𝑀)
185, 17mndidcl 13458 . . . 4 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
19 fvresi 5831 . . . 4 ((0g𝑀) ∈ 𝐵 → (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))
2018, 19syl 14 . . 3 (𝑀 ∈ Mnd → (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))
214, 16, 203jca 1201 . 2 (𝑀 ∈ Mnd → (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀)))
225, 5, 6, 6, 17, 17ismhm 13489 . 2 (( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀) ↔ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd) ∧ (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) ∧ (( I ↾ 𝐵)‘(0g𝑀)) = (0g𝑀))))
231, 1, 21, 22syl21anbrc 1206 1 (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508   I cid 4378  cres 4720  wf 5313  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Mndcmnd 13444   MndHom cmhm 13485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator