| Step | Hyp | Ref
| Expression |
| 1 | | simp1 999 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶 ∈ (∞Met‘𝑋)) |
| 2 | | xmetcl 14672 |
. . . . . . 7
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈
ℝ*) |
| 3 | | xmetge0 14685 |
. . . . . . 7
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐶𝑦)) |
| 4 | | elxrge0 10070 |
. . . . . . 7
⊢ ((𝑥𝐶𝑦) ∈ (0[,]+∞) ↔ ((𝑥𝐶𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐶𝑦))) |
| 5 | 2, 3, 4 | sylanbrc 417 |
. . . . . 6
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈ (0[,]+∞)) |
| 6 | 5 | 3expb 1206 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ (0[,]+∞)) |
| 7 | 1, 6 | sylan 283 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ (0[,]+∞)) |
| 8 | | xmetf 14670 |
. . . . . . 7
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) |
| 9 | 8 | 3ad2ant1 1020 |
. . . . . 6
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) |
| 10 | 9 | ffnd 5411 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶 Fn (𝑋 × 𝑋)) |
| 11 | | fnovim 6035 |
. . . . 5
⊢ (𝐶 Fn (𝑋 × 𝑋) → 𝐶 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐶𝑦))) |
| 12 | 10, 11 | syl 14 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐶𝑦))) |
| 13 | | eqidd 2197 |
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) = (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, <
))) |
| 14 | | preq1 3700 |
. . . . 5
⊢ (𝑧 = (𝑥𝐶𝑦) → {𝑧, 𝑅} = {(𝑥𝐶𝑦), 𝑅}) |
| 15 | 14 | infeq1d 7087 |
. . . 4
⊢ (𝑧 = (𝑥𝐶𝑦) → inf({𝑧, 𝑅}, ℝ*, < ) = inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) |
| 16 | 7, 12, 13, 15 | fmpoco 6283 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) ∘
𝐶) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
))) |
| 17 | | stdbdmet.1 |
. . 3
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) |
| 18 | 16, 17 | eqtr4di 2247 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) ∘
𝐶) = 𝐷) |
| 19 | | elxrge0 10070 |
. . . . . 6
⊢ (𝑧 ∈ (0[,]+∞) ↔
(𝑧 ∈
ℝ* ∧ 0 ≤ 𝑧)) |
| 20 | 19 | simplbi 274 |
. . . . 5
⊢ (𝑧 ∈ (0[,]+∞) →
𝑧 ∈
ℝ*) |
| 21 | | simp2 1000 |
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝑅 ∈
ℝ*) |
| 22 | | xrmincl 11448 |
. . . . 5
⊢ ((𝑧 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑧, 𝑅}, ℝ*, < ) ∈
ℝ*) |
| 23 | 20, 21, 22 | syl2anr 290 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑧 ∈ (0[,]+∞)) → inf({𝑧, 𝑅}, ℝ*, < ) ∈
ℝ*) |
| 24 | 23 | fmpttd 5720 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, <
)):(0[,]+∞)⟶ℝ*) |
| 25 | | eqid 2196 |
. . . . . 6
⊢ (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) = (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, <
)) |
| 26 | | preq1 3700 |
. . . . . . 7
⊢ (𝑧 = 𝑎 → {𝑧, 𝑅} = {𝑎, 𝑅}) |
| 27 | 26 | infeq1d 7087 |
. . . . . 6
⊢ (𝑧 = 𝑎 → inf({𝑧, 𝑅}, ℝ*, < ) = inf({𝑎, 𝑅}, ℝ*, <
)) |
| 28 | | simpr 110 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 𝑎 ∈
(0[,]+∞)) |
| 29 | | elxrge0 10070 |
. . . . . . . 8
⊢ (𝑎 ∈ (0[,]+∞) ↔
(𝑎 ∈
ℝ* ∧ 0 ≤ 𝑎)) |
| 30 | 29 | simplbi 274 |
. . . . . . 7
⊢ (𝑎 ∈ (0[,]+∞) →
𝑎 ∈
ℝ*) |
| 31 | | xrmincl 11448 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑎, 𝑅}, ℝ*, < ) ∈
ℝ*) |
| 32 | 30, 21, 31 | syl2anr 290 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → inf({𝑎, 𝑅}, ℝ*, < ) ∈
ℝ*) |
| 33 | 25, 27, 28, 32 | fvmptd3 5658 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) = inf({𝑎, 𝑅}, ℝ*, <
)) |
| 34 | 33 | eqeq1d 2205 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) = 0 ↔ inf({𝑎, 𝑅}, ℝ*, < ) =
0)) |
| 35 | | 0xr 8090 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
| 36 | 35 | a1i 9 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 ∈
ℝ*) |
| 37 | 30 | adantl 277 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 𝑎 ∈
ℝ*) |
| 38 | 21 | adantr 276 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 𝑅 ∈
ℝ*) |
| 39 | | xrltmininf 11452 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ 𝑎 ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (0 < inf({𝑎,
𝑅}, ℝ*,
< ) ↔ (0 < 𝑎
∧ 0 < 𝑅))) |
| 40 | 36, 37, 38, 39 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔ (0
< 𝑎 ∧ 0 < 𝑅))) |
| 41 | | simp3 1001 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 0 < 𝑅) |
| 42 | 41 | adantr 276 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 < 𝑅) |
| 43 | 42 | biantrud 304 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 < 𝑎 ↔ (0 < 𝑎 ∧ 0 < 𝑅))) |
| 44 | 40, 43 | bitr4d 191 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔ 0 <
𝑎)) |
| 45 | 44 | notbid 668 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔ ¬
0 < 𝑎)) |
| 46 | 28, 29 | sylib 122 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (𝑎 ∈ ℝ*
∧ 0 ≤ 𝑎)) |
| 47 | 46 | simprd 114 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 ≤ 𝑎) |
| 48 | | xrltle 9890 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (0 <
𝑅 → 0 ≤ 𝑅)) |
| 49 | 35, 21, 48 | sylancr 414 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → (0 < 𝑅 → 0 ≤ 𝑅)) |
| 50 | 41, 49 | mpd 13 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 0 ≤ 𝑅) |
| 51 | 50 | adantr 276 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 ≤ 𝑅) |
| 52 | | xrlemininf 11453 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 𝑎 ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (0 ≤ inf({𝑎,
𝑅}, ℝ*,
< ) ↔ (0 ≤ 𝑎
∧ 0 ≤ 𝑅))) |
| 53 | 36, 37, 38, 52 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 ≤
inf({𝑎, 𝑅}, ℝ*, < ) ↔ (0
≤ 𝑎 ∧ 0 ≤ 𝑅))) |
| 54 | 47, 51, 53 | mpbir2and 946 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 ≤
inf({𝑎, 𝑅}, ℝ*, <
)) |
| 55 | | xrlenlt 8108 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ inf({𝑎, 𝑅}, ℝ*, < ) ∈
ℝ*) → (0 ≤ inf({𝑎, 𝑅}, ℝ*, < ) ↔ ¬
inf({𝑎, 𝑅}, ℝ*, < ) <
0)) |
| 56 | 35, 32, 55 | sylancr 414 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 ≤
inf({𝑎, 𝑅}, ℝ*, < ) ↔ ¬
inf({𝑎, 𝑅}, ℝ*, < ) <
0)) |
| 57 | 54, 56 | mpbid 147 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → ¬
inf({𝑎, 𝑅}, ℝ*, < ) <
0) |
| 58 | 57 | biantrurd 305 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔ (¬
inf({𝑎, 𝑅}, ℝ*, < ) < 0 ∧
¬ 0 < inf({𝑎, 𝑅}, ℝ*, <
)))) |
| 59 | | xrlttri3 9889 |
. . . . . . 7
⊢
((inf({𝑎, 𝑅}, ℝ*, < )
∈ ℝ* ∧ 0 ∈ ℝ*) →
(inf({𝑎, 𝑅}, ℝ*, < ) = 0 ↔
(¬ inf({𝑎, 𝑅}, ℝ*, < )
< 0 ∧ ¬ 0 < inf({𝑎, 𝑅}, ℝ*, <
)))) |
| 60 | 32, 36, 59 | syl2anc 411 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (inf({𝑎, 𝑅}, ℝ*, < ) = 0 ↔
(¬ inf({𝑎, 𝑅}, ℝ*, < )
< 0 ∧ ¬ 0 < inf({𝑎, 𝑅}, ℝ*, <
)))) |
| 61 | 58, 60 | bitr4d 191 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔
inf({𝑎, 𝑅}, ℝ*, < ) =
0)) |
| 62 | | xrlenlt 8108 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ 𝑎 ∈ ℝ*) → (0 ≤
𝑎 ↔ ¬ 𝑎 < 0)) |
| 63 | 35, 37, 62 | sylancr 414 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 ≤ 𝑎 ↔ ¬ 𝑎 < 0)) |
| 64 | 47, 63 | mpbid 147 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → ¬ 𝑎 < 0) |
| 65 | 64 | biantrurd 305 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
𝑎 ↔ (¬ 𝑎 < 0 ∧ ¬ 0 < 𝑎))) |
| 66 | | xrlttri3 9889 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ*
∧ 0 ∈ ℝ*) → (𝑎 = 0 ↔ (¬ 𝑎 < 0 ∧ ¬ 0 < 𝑎))) |
| 67 | 37, 36, 66 | syl2anc 411 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (𝑎 = 0 ↔ (¬ 𝑎 < 0 ∧ ¬ 0 < 𝑎))) |
| 68 | 65, 67 | bitr4d 191 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
𝑎 ↔ 𝑎 = 0)) |
| 69 | 45, 61, 68 | 3bitr3d 218 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (inf({𝑎, 𝑅}, ℝ*, < ) = 0 ↔
𝑎 = 0)) |
| 70 | 34, 69 | bitrd 188 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) = 0 ↔ 𝑎 = 0)) |
| 71 | 30 | ad2antrl 490 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 𝑎 ∈
ℝ*) |
| 72 | 21 | adantr 276 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 𝑅 ∈
ℝ*) |
| 73 | | xrmin1inf 11449 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑎) |
| 74 | 71, 72, 73 | syl2anc 411 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑎) |
| 75 | 71, 72, 31 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({𝑎, 𝑅}, ℝ*, < )
∈ ℝ*) |
| 76 | | elxrge0 10070 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (0[,]+∞) ↔
(𝑏 ∈
ℝ* ∧ 0 ≤ 𝑏)) |
| 77 | 76 | simplbi 274 |
. . . . . . . . 9
⊢ (𝑏 ∈ (0[,]+∞) →
𝑏 ∈
ℝ*) |
| 78 | 77 | ad2antll 491 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 𝑏 ∈
ℝ*) |
| 79 | | xrletr 9900 |
. . . . . . . 8
⊢
((inf({𝑎, 𝑅}, ℝ*, < )
∈ ℝ* ∧ 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*)
→ ((inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑎 ∧ 𝑎 ≤ 𝑏) → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑏)) |
| 80 | 75, 71, 78, 79 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑎 ∧ 𝑎 ≤ 𝑏) → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑏)) |
| 81 | 74, 80 | mpand 429 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎 ≤ 𝑏 → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑏)) |
| 82 | | xrmin2inf 11450 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑅) |
| 83 | 71, 72, 82 | syl2anc 411 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑅) |
| 84 | 81, 83 | jctird 317 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎 ≤ 𝑏 → (inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑏 ∧ inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑅))) |
| 85 | | xrlemininf 11453 |
. . . . . 6
⊢
((inf({𝑎, 𝑅}, ℝ*, < )
∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (inf({𝑎, 𝑅}, ℝ*, < )
≤ inf({𝑏, 𝑅}, ℝ*, < )
↔ (inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑏 ∧ inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑅))) |
| 86 | 75, 78, 72, 85 | syl3anc 1249 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (inf({𝑎, 𝑅}, ℝ*, < )
≤ inf({𝑏, 𝑅}, ℝ*, < )
↔ (inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑏 ∧ inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑅))) |
| 87 | 84, 86 | sylibrd 169 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎 ≤ 𝑏 → inf({𝑎, 𝑅}, ℝ*, < ) ≤
inf({𝑏, 𝑅}, ℝ*, <
))) |
| 88 | 33 | adantrr 479 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) = inf({𝑎, 𝑅}, ℝ*, <
)) |
| 89 | | preq1 3700 |
. . . . . . 7
⊢ (𝑧 = 𝑏 → {𝑧, 𝑅} = {𝑏, 𝑅}) |
| 90 | 89 | infeq1d 7087 |
. . . . . 6
⊢ (𝑧 = 𝑏 → inf({𝑧, 𝑅}, ℝ*, < ) = inf({𝑏, 𝑅}, ℝ*, <
)) |
| 91 | | simpr 110 |
. . . . . . 7
⊢ ((𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞))
→ 𝑏 ∈
(0[,]+∞)) |
| 92 | 91 | adantl 277 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 𝑏 ∈
(0[,]+∞)) |
| 93 | | xrmincl 11448 |
. . . . . . 7
⊢ ((𝑏 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑏, 𝑅}, ℝ*, < ) ∈
ℝ*) |
| 94 | 78, 72, 93 | syl2anc 411 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({𝑏, 𝑅}, ℝ*, < )
∈ ℝ*) |
| 95 | 25, 90, 92, 94 | fvmptd3 5658 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏) = inf({𝑏, 𝑅}, ℝ*, <
)) |
| 96 | 88, 95 | breq12d 4047 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) ≤ ((𝑧 ∈ (0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏) ↔ inf({𝑎, 𝑅}, ℝ*, < ) ≤
inf({𝑏, 𝑅}, ℝ*, <
))) |
| 97 | 87, 96 | sylibrd 169 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎 ≤ 𝑏 → ((𝑧 ∈ (0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) ≤ ((𝑧 ∈ (0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏))) |
| 98 | 29 | simprbi 275 |
. . . . . 6
⊢ (𝑎 ∈ (0[,]+∞) → 0
≤ 𝑎) |
| 99 | 98 | ad2antrl 490 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 0 ≤ 𝑎) |
| 100 | 76 | simprbi 275 |
. . . . . 6
⊢ (𝑏 ∈ (0[,]+∞) → 0
≤ 𝑏) |
| 101 | 100 | ad2antll 491 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 0 ≤ 𝑏) |
| 102 | 41 | adantr 276 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 0 < 𝑅) |
| 103 | | xrbdtri 11458 |
. . . . 5
⊢ (((𝑎 ∈ ℝ*
∧ 0 ≤ 𝑎) ∧
(𝑏 ∈
ℝ* ∧ 0 ≤ 𝑏) ∧ (𝑅 ∈ ℝ* ∧ 0 <
𝑅)) → inf({(𝑎 +𝑒 𝑏), 𝑅}, ℝ*, < ) ≤
(inf({𝑎, 𝑅}, ℝ*, < )
+𝑒 inf({𝑏, 𝑅}, ℝ*, <
))) |
| 104 | 71, 99, 78, 101, 72, 102, 103 | syl222anc 1265 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({(𝑎
+𝑒 𝑏),
𝑅}, ℝ*,
< ) ≤ (inf({𝑎, 𝑅}, ℝ*, < )
+𝑒 inf({𝑏, 𝑅}, ℝ*, <
))) |
| 105 | | preq1 3700 |
. . . . . 6
⊢ (𝑧 = (𝑎 +𝑒 𝑏) → {𝑧, 𝑅} = {(𝑎 +𝑒 𝑏), 𝑅}) |
| 106 | 105 | infeq1d 7087 |
. . . . 5
⊢ (𝑧 = (𝑎 +𝑒 𝑏) → inf({𝑧, 𝑅}, ℝ*, < ) = inf({(𝑎 +𝑒 𝑏), 𝑅}, ℝ*, <
)) |
| 107 | | ge0xaddcl 10075 |
. . . . . 6
⊢ ((𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞))
→ (𝑎
+𝑒 𝑏)
∈ (0[,]+∞)) |
| 108 | 107 | adantl 277 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎
+𝑒 𝑏)
∈ (0[,]+∞)) |
| 109 | 71, 78 | xaddcld 9976 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎
+𝑒 𝑏)
∈ ℝ*) |
| 110 | | xrmincl 11448 |
. . . . . 6
⊢ (((𝑎 +𝑒 𝑏) ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({(𝑎 +𝑒 𝑏), 𝑅}, ℝ*, < ) ∈
ℝ*) |
| 111 | 109, 72, 110 | syl2anc 411 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({(𝑎
+𝑒 𝑏),
𝑅}, ℝ*,
< ) ∈ ℝ*) |
| 112 | 25, 106, 108, 111 | fvmptd3 5658 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘(𝑎 +𝑒 𝑏)) = inf({(𝑎 +𝑒 𝑏), 𝑅}, ℝ*, <
)) |
| 113 | 88, 95 | oveq12d 5943 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏)) = (inf({𝑎, 𝑅}, ℝ*, < )
+𝑒 inf({𝑏, 𝑅}, ℝ*, <
))) |
| 114 | 104, 112,
113 | 3brtr4d 4066 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘(𝑎 +𝑒 𝑏)) ≤ (((𝑧 ∈ (0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏))) |
| 115 | 1, 24, 70, 97, 114 | comet 14819 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) ∘
𝐶) ∈
(∞Met‘𝑋)) |
| 116 | 18, 115 | eqeltrrd 2274 |
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |