| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp1 999 | 
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶 ∈ (∞Met‘𝑋)) | 
| 2 |   | xmetcl 14588 | 
. . . . . . 7
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈
ℝ*) | 
| 3 |   | xmetge0 14601 | 
. . . . . . 7
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐶𝑦)) | 
| 4 |   | elxrge0 10053 | 
. . . . . . 7
⊢ ((𝑥𝐶𝑦) ∈ (0[,]+∞) ↔ ((𝑥𝐶𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐶𝑦))) | 
| 5 | 2, 3, 4 | sylanbrc 417 | 
. . . . . 6
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈ (0[,]+∞)) | 
| 6 | 5 | 3expb 1206 | 
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ (0[,]+∞)) | 
| 7 | 1, 6 | sylan 283 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ (0[,]+∞)) | 
| 8 |   | xmetf 14586 | 
. . . . . . 7
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) | 
| 9 | 8 | 3ad2ant1 1020 | 
. . . . . 6
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶:(𝑋 × 𝑋)⟶ℝ*) | 
| 10 | 9 | ffnd 5408 | 
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶 Fn (𝑋 × 𝑋)) | 
| 11 |   | fnovim 6031 | 
. . . . 5
⊢ (𝐶 Fn (𝑋 × 𝑋) → 𝐶 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐶𝑦))) | 
| 12 | 10, 11 | syl 14 | 
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐶𝑦))) | 
| 13 |   | eqidd 2197 | 
. . . 4
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) = (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, <
))) | 
| 14 |   | preq1 3699 | 
. . . . 5
⊢ (𝑧 = (𝑥𝐶𝑦) → {𝑧, 𝑅} = {(𝑥𝐶𝑦), 𝑅}) | 
| 15 | 14 | infeq1d 7078 | 
. . . 4
⊢ (𝑧 = (𝑥𝐶𝑦) → inf({𝑧, 𝑅}, ℝ*, < ) = inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) | 
| 16 | 7, 12, 13, 15 | fmpoco 6274 | 
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) ∘
𝐶) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
))) | 
| 17 |   | stdbdmet.1 | 
. . 3
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) | 
| 18 | 16, 17 | eqtr4di 2247 | 
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) ∘
𝐶) = 𝐷) | 
| 19 |   | elxrge0 10053 | 
. . . . . 6
⊢ (𝑧 ∈ (0[,]+∞) ↔
(𝑧 ∈
ℝ* ∧ 0 ≤ 𝑧)) | 
| 20 | 19 | simplbi 274 | 
. . . . 5
⊢ (𝑧 ∈ (0[,]+∞) →
𝑧 ∈
ℝ*) | 
| 21 |   | simp2 1000 | 
. . . . 5
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝑅 ∈
ℝ*) | 
| 22 |   | xrmincl 11431 | 
. . . . 5
⊢ ((𝑧 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑧, 𝑅}, ℝ*, < ) ∈
ℝ*) | 
| 23 | 20, 21, 22 | syl2anr 290 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑧 ∈ (0[,]+∞)) → inf({𝑧, 𝑅}, ℝ*, < ) ∈
ℝ*) | 
| 24 | 23 | fmpttd 5717 | 
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, <
)):(0[,]+∞)⟶ℝ*) | 
| 25 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) = (𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, <
)) | 
| 26 |   | preq1 3699 | 
. . . . . . 7
⊢ (𝑧 = 𝑎 → {𝑧, 𝑅} = {𝑎, 𝑅}) | 
| 27 | 26 | infeq1d 7078 | 
. . . . . 6
⊢ (𝑧 = 𝑎 → inf({𝑧, 𝑅}, ℝ*, < ) = inf({𝑎, 𝑅}, ℝ*, <
)) | 
| 28 |   | simpr 110 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 𝑎 ∈
(0[,]+∞)) | 
| 29 |   | elxrge0 10053 | 
. . . . . . . 8
⊢ (𝑎 ∈ (0[,]+∞) ↔
(𝑎 ∈
ℝ* ∧ 0 ≤ 𝑎)) | 
| 30 | 29 | simplbi 274 | 
. . . . . . 7
⊢ (𝑎 ∈ (0[,]+∞) →
𝑎 ∈
ℝ*) | 
| 31 |   | xrmincl 11431 | 
. . . . . . 7
⊢ ((𝑎 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑎, 𝑅}, ℝ*, < ) ∈
ℝ*) | 
| 32 | 30, 21, 31 | syl2anr 290 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → inf({𝑎, 𝑅}, ℝ*, < ) ∈
ℝ*) | 
| 33 | 25, 27, 28, 32 | fvmptd3 5655 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) = inf({𝑎, 𝑅}, ℝ*, <
)) | 
| 34 | 33 | eqeq1d 2205 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) = 0 ↔ inf({𝑎, 𝑅}, ℝ*, < ) =
0)) | 
| 35 |   | 0xr 8073 | 
. . . . . . . . 9
⊢ 0 ∈
ℝ* | 
| 36 | 35 | a1i 9 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 ∈
ℝ*) | 
| 37 | 30 | adantl 277 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 𝑎 ∈
ℝ*) | 
| 38 | 21 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 𝑅 ∈
ℝ*) | 
| 39 |   | xrltmininf 11435 | 
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ 𝑎 ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (0 < inf({𝑎,
𝑅}, ℝ*,
< ) ↔ (0 < 𝑎
∧ 0 < 𝑅))) | 
| 40 | 36, 37, 38, 39 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔ (0
< 𝑎 ∧ 0 < 𝑅))) | 
| 41 |   | simp3 1001 | 
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 0 < 𝑅) | 
| 42 | 41 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 < 𝑅) | 
| 43 | 42 | biantrud 304 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 < 𝑎 ↔ (0 < 𝑎 ∧ 0 < 𝑅))) | 
| 44 | 40, 43 | bitr4d 191 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔ 0 <
𝑎)) | 
| 45 | 44 | notbid 668 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔ ¬
0 < 𝑎)) | 
| 46 | 28, 29 | sylib 122 | 
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (𝑎 ∈ ℝ*
∧ 0 ≤ 𝑎)) | 
| 47 | 46 | simprd 114 | 
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 ≤ 𝑎) | 
| 48 |   | xrltle 9873 | 
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (0 <
𝑅 → 0 ≤ 𝑅)) | 
| 49 | 35, 21, 48 | sylancr 414 | 
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → (0 < 𝑅 → 0 ≤ 𝑅)) | 
| 50 | 41, 49 | mpd 13 | 
. . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 0 ≤ 𝑅) | 
| 51 | 50 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 ≤ 𝑅) | 
| 52 |   | xrlemininf 11436 | 
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 𝑎 ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (0 ≤ inf({𝑎,
𝑅}, ℝ*,
< ) ↔ (0 ≤ 𝑎
∧ 0 ≤ 𝑅))) | 
| 53 | 36, 37, 38, 52 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 ≤
inf({𝑎, 𝑅}, ℝ*, < ) ↔ (0
≤ 𝑎 ∧ 0 ≤ 𝑅))) | 
| 54 | 47, 51, 53 | mpbir2and 946 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → 0 ≤
inf({𝑎, 𝑅}, ℝ*, <
)) | 
| 55 |   | xrlenlt 8091 | 
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ inf({𝑎, 𝑅}, ℝ*, < ) ∈
ℝ*) → (0 ≤ inf({𝑎, 𝑅}, ℝ*, < ) ↔ ¬
inf({𝑎, 𝑅}, ℝ*, < ) <
0)) | 
| 56 | 35, 32, 55 | sylancr 414 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 ≤
inf({𝑎, 𝑅}, ℝ*, < ) ↔ ¬
inf({𝑎, 𝑅}, ℝ*, < ) <
0)) | 
| 57 | 54, 56 | mpbid 147 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → ¬
inf({𝑎, 𝑅}, ℝ*, < ) <
0) | 
| 58 | 57 | biantrurd 305 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔ (¬
inf({𝑎, 𝑅}, ℝ*, < ) < 0 ∧
¬ 0 < inf({𝑎, 𝑅}, ℝ*, <
)))) | 
| 59 |   | xrlttri3 9872 | 
. . . . . . 7
⊢
((inf({𝑎, 𝑅}, ℝ*, < )
∈ ℝ* ∧ 0 ∈ ℝ*) →
(inf({𝑎, 𝑅}, ℝ*, < ) = 0 ↔
(¬ inf({𝑎, 𝑅}, ℝ*, < )
< 0 ∧ ¬ 0 < inf({𝑎, 𝑅}, ℝ*, <
)))) | 
| 60 | 32, 36, 59 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (inf({𝑎, 𝑅}, ℝ*, < ) = 0 ↔
(¬ inf({𝑎, 𝑅}, ℝ*, < )
< 0 ∧ ¬ 0 < inf({𝑎, 𝑅}, ℝ*, <
)))) | 
| 61 | 58, 60 | bitr4d 191 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
inf({𝑎, 𝑅}, ℝ*, < ) ↔
inf({𝑎, 𝑅}, ℝ*, < ) =
0)) | 
| 62 |   | xrlenlt 8091 | 
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ 𝑎 ∈ ℝ*) → (0 ≤
𝑎 ↔ ¬ 𝑎 < 0)) | 
| 63 | 35, 37, 62 | sylancr 414 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (0 ≤ 𝑎 ↔ ¬ 𝑎 < 0)) | 
| 64 | 47, 63 | mpbid 147 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → ¬ 𝑎 < 0) | 
| 65 | 64 | biantrurd 305 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
𝑎 ↔ (¬ 𝑎 < 0 ∧ ¬ 0 < 𝑎))) | 
| 66 |   | xrlttri3 9872 | 
. . . . . . 7
⊢ ((𝑎 ∈ ℝ*
∧ 0 ∈ ℝ*) → (𝑎 = 0 ↔ (¬ 𝑎 < 0 ∧ ¬ 0 < 𝑎))) | 
| 67 | 37, 36, 66 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (𝑎 = 0 ↔ (¬ 𝑎 < 0 ∧ ¬ 0 < 𝑎))) | 
| 68 | 65, 67 | bitr4d 191 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (¬ 0 <
𝑎 ↔ 𝑎 = 0)) | 
| 69 | 45, 61, 68 | 3bitr3d 218 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (inf({𝑎, 𝑅}, ℝ*, < ) = 0 ↔
𝑎 = 0)) | 
| 70 | 34, 69 | bitrd 188 | 
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ 𝑎 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) = 0 ↔ 𝑎 = 0)) | 
| 71 | 30 | ad2antrl 490 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 𝑎 ∈
ℝ*) | 
| 72 | 21 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 𝑅 ∈
ℝ*) | 
| 73 |   | xrmin1inf 11432 | 
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑎) | 
| 74 | 71, 72, 73 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑎) | 
| 75 | 71, 72, 31 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({𝑎, 𝑅}, ℝ*, < )
∈ ℝ*) | 
| 76 |   | elxrge0 10053 | 
. . . . . . . . . 10
⊢ (𝑏 ∈ (0[,]+∞) ↔
(𝑏 ∈
ℝ* ∧ 0 ≤ 𝑏)) | 
| 77 | 76 | simplbi 274 | 
. . . . . . . . 9
⊢ (𝑏 ∈ (0[,]+∞) →
𝑏 ∈
ℝ*) | 
| 78 | 77 | ad2antll 491 | 
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 𝑏 ∈
ℝ*) | 
| 79 |   | xrletr 9883 | 
. . . . . . . 8
⊢
((inf({𝑎, 𝑅}, ℝ*, < )
∈ ℝ* ∧ 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ*)
→ ((inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑎 ∧ 𝑎 ≤ 𝑏) → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑏)) | 
| 80 | 75, 71, 78, 79 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑎 ∧ 𝑎 ≤ 𝑏) → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑏)) | 
| 81 | 74, 80 | mpand 429 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎 ≤ 𝑏 → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑏)) | 
| 82 |   | xrmin2inf 11433 | 
. . . . . . 7
⊢ ((𝑎 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑅) | 
| 83 | 71, 72, 82 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑅) | 
| 84 | 81, 83 | jctird 317 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎 ≤ 𝑏 → (inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑏 ∧ inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑅))) | 
| 85 |   | xrlemininf 11436 | 
. . . . . 6
⊢
((inf({𝑎, 𝑅}, ℝ*, < )
∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝑅 ∈ ℝ*)
→ (inf({𝑎, 𝑅}, ℝ*, < )
≤ inf({𝑏, 𝑅}, ℝ*, < )
↔ (inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑏 ∧ inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑅))) | 
| 86 | 75, 78, 72, 85 | syl3anc 1249 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (inf({𝑎, 𝑅}, ℝ*, < )
≤ inf({𝑏, 𝑅}, ℝ*, < )
↔ (inf({𝑎, 𝑅}, ℝ*, < )
≤ 𝑏 ∧ inf({𝑎, 𝑅}, ℝ*, < ) ≤ 𝑅))) | 
| 87 | 84, 86 | sylibrd 169 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎 ≤ 𝑏 → inf({𝑎, 𝑅}, ℝ*, < ) ≤
inf({𝑏, 𝑅}, ℝ*, <
))) | 
| 88 | 33 | adantrr 479 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) = inf({𝑎, 𝑅}, ℝ*, <
)) | 
| 89 |   | preq1 3699 | 
. . . . . . 7
⊢ (𝑧 = 𝑏 → {𝑧, 𝑅} = {𝑏, 𝑅}) | 
| 90 | 89 | infeq1d 7078 | 
. . . . . 6
⊢ (𝑧 = 𝑏 → inf({𝑧, 𝑅}, ℝ*, < ) = inf({𝑏, 𝑅}, ℝ*, <
)) | 
| 91 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞))
→ 𝑏 ∈
(0[,]+∞)) | 
| 92 | 91 | adantl 277 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 𝑏 ∈
(0[,]+∞)) | 
| 93 |   | xrmincl 11431 | 
. . . . . . 7
⊢ ((𝑏 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({𝑏, 𝑅}, ℝ*, < ) ∈
ℝ*) | 
| 94 | 78, 72, 93 | syl2anc 411 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({𝑏, 𝑅}, ℝ*, < )
∈ ℝ*) | 
| 95 | 25, 90, 92, 94 | fvmptd3 5655 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏) = inf({𝑏, 𝑅}, ℝ*, <
)) | 
| 96 | 88, 95 | breq12d 4046 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) ≤ ((𝑧 ∈ (0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏) ↔ inf({𝑎, 𝑅}, ℝ*, < ) ≤
inf({𝑏, 𝑅}, ℝ*, <
))) | 
| 97 | 87, 96 | sylibrd 169 | 
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎 ≤ 𝑏 → ((𝑧 ∈ (0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) ≤ ((𝑧 ∈ (0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏))) | 
| 98 | 29 | simprbi 275 | 
. . . . . 6
⊢ (𝑎 ∈ (0[,]+∞) → 0
≤ 𝑎) | 
| 99 | 98 | ad2antrl 490 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 0 ≤ 𝑎) | 
| 100 | 76 | simprbi 275 | 
. . . . . 6
⊢ (𝑏 ∈ (0[,]+∞) → 0
≤ 𝑏) | 
| 101 | 100 | ad2antll 491 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 0 ≤ 𝑏) | 
| 102 | 41 | adantr 276 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ 0 < 𝑅) | 
| 103 |   | xrbdtri 11441 | 
. . . . 5
⊢ (((𝑎 ∈ ℝ*
∧ 0 ≤ 𝑎) ∧
(𝑏 ∈
ℝ* ∧ 0 ≤ 𝑏) ∧ (𝑅 ∈ ℝ* ∧ 0 <
𝑅)) → inf({(𝑎 +𝑒 𝑏), 𝑅}, ℝ*, < ) ≤
(inf({𝑎, 𝑅}, ℝ*, < )
+𝑒 inf({𝑏, 𝑅}, ℝ*, <
))) | 
| 104 | 71, 99, 78, 101, 72, 102, 103 | syl222anc 1265 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({(𝑎
+𝑒 𝑏),
𝑅}, ℝ*,
< ) ≤ (inf({𝑎, 𝑅}, ℝ*, < )
+𝑒 inf({𝑏, 𝑅}, ℝ*, <
))) | 
| 105 |   | preq1 3699 | 
. . . . . 6
⊢ (𝑧 = (𝑎 +𝑒 𝑏) → {𝑧, 𝑅} = {(𝑎 +𝑒 𝑏), 𝑅}) | 
| 106 | 105 | infeq1d 7078 | 
. . . . 5
⊢ (𝑧 = (𝑎 +𝑒 𝑏) → inf({𝑧, 𝑅}, ℝ*, < ) = inf({(𝑎 +𝑒 𝑏), 𝑅}, ℝ*, <
)) | 
| 107 |   | ge0xaddcl 10058 | 
. . . . . 6
⊢ ((𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞))
→ (𝑎
+𝑒 𝑏)
∈ (0[,]+∞)) | 
| 108 | 107 | adantl 277 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎
+𝑒 𝑏)
∈ (0[,]+∞)) | 
| 109 | 71, 78 | xaddcld 9959 | 
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (𝑎
+𝑒 𝑏)
∈ ℝ*) | 
| 110 |   | xrmincl 11431 | 
. . . . . 6
⊢ (((𝑎 +𝑒 𝑏) ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → inf({(𝑎 +𝑒 𝑏), 𝑅}, ℝ*, < ) ∈
ℝ*) | 
| 111 | 109, 72, 110 | syl2anc 411 | 
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ inf({(𝑎
+𝑒 𝑏),
𝑅}, ℝ*,
< ) ∈ ℝ*) | 
| 112 | 25, 106, 108, 111 | fvmptd3 5655 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘(𝑎 +𝑒 𝑏)) = inf({(𝑎 +𝑒 𝑏), 𝑅}, ℝ*, <
)) | 
| 113 | 88, 95 | oveq12d 5940 | 
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ (((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏)) = (inf({𝑎, 𝑅}, ℝ*, < )
+𝑒 inf({𝑏, 𝑅}, ℝ*, <
))) | 
| 114 | 104, 112,
113 | 3brtr4d 4065 | 
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑎 ∈ (0[,]+∞) ∧
𝑏 ∈ (0[,]+∞)))
→ ((𝑧 ∈
(0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘(𝑎 +𝑒 𝑏)) ≤ (((𝑧 ∈ (0[,]+∞) ↦ inf({𝑧, 𝑅}, ℝ*, < ))‘𝑎) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < ))‘𝑏))) | 
| 115 | 1, 24, 70, 97, 114 | comet 14735 | 
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → ((𝑧 ∈ (0[,]+∞) ↦
inf({𝑧, 𝑅}, ℝ*, < )) ∘
𝐶) ∈
(∞Met‘𝑋)) | 
| 116 | 18, 115 | eqeltrrd 2274 | 
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |