Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdenle GIF version

Theorem divdenle 11931
 Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divdenle ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵)

Proof of Theorem divdenle
StepHypRef Expression
1 divnumden 11930 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))
21simprd 113 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))
3 simpl 108 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
4 nnz 9117 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
54adantl 275 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
6 nnne0 8792 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
76neneqd 2330 . . . . . . . 8 (𝐵 ∈ ℕ → ¬ 𝐵 = 0)
87adantl 275 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
98intnand 917 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
10 gcdn0cl 11707 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
113, 5, 9, 10syl21anc 1216 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1211nnge1d 8807 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ≤ (𝐴 gcd 𝐵))
13 1red 7825 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ∈ ℝ)
14 0lt1 7933 . . . . . 6 0 < 1
1514a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 1)
1611nnred 8777 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ)
1711nngt0d 8808 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 gcd 𝐵))
18 nnre 8771 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1918adantl 275 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
20 nngt0 8789 . . . . . 6 (𝐵 ∈ ℕ → 0 < 𝐵)
2120adantl 275 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
22 lediv2 8693 . . . . 5 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1)))
2313, 15, 16, 17, 19, 21, 22syl222anc 1233 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1)))
2412, 23mpbid 146 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1))
25 nncn 8772 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
2625adantl 275 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
2726div1d 8584 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 1) = 𝐵)
2824, 27breqtrd 3963 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ 𝐵)
292, 28eqbrtrd 3959 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481   class class class wbr 3938  ‘cfv 5132  (class class class)co 5783  ℂcc 7662  ℝcr 7663  0cc0 7664  1c1 7665   < clt 7844   ≤ cle 7845   / cdiv 8476  ℕcn 8764  ℤcz 9098   gcd cgcd 11691  numercnumer 11915  denomcdenom 11916 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780  ax-pre-mulgt0 7781  ax-pre-mulext 7782  ax-arch 7783  ax-caucvg 7784 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-1st 6047  df-2nd 6048  df-recs 6211  df-frec 6297  df-sup 6881  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-reap 8381  df-ap 8388  df-div 8477  df-inn 8765  df-2 8823  df-3 8824  df-4 8825  df-n0 9022  df-z 9099  df-uz 9371  df-q 9459  df-rp 9491  df-fz 9842  df-fzo 9971  df-fl 10094  df-mod 10147  df-seqfrec 10270  df-exp 10344  df-cj 10666  df-re 10667  df-im 10668  df-rsqrt 10822  df-abs 10823  df-dvds 11550  df-gcd 11692  df-numer 11917  df-denom 11918 This theorem is referenced by:  qden1elz  11939
 Copyright terms: Public domain W3C validator