![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divdenle | GIF version |
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
divdenle | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divnumden 12179 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))) | |
2 | 1 | simprd 114 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))) |
3 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) | |
4 | nnz 9261 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
6 | nnne0 8936 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
7 | 6 | neneqd 2368 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → ¬ 𝐵 = 0) |
8 | 7 | adantl 277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ 𝐵 = 0) |
9 | 8 | intnand 931 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
10 | gcdn0cl 11946 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) | |
11 | 3, 5, 9, 10 | syl21anc 1237 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
12 | 11 | nnge1d 8951 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ≤ (𝐴 gcd 𝐵)) |
13 | 1red 7963 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ∈ ℝ) | |
14 | 0lt1 8074 | . . . . . 6 ⊢ 0 < 1 | |
15 | 14 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 1) |
16 | 11 | nnred 8921 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ) |
17 | 11 | nngt0d 8952 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 gcd 𝐵)) |
18 | nnre 8915 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
19 | 18 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
20 | nngt0 8933 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
21 | 20 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
22 | lediv2 8837 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1))) | |
23 | 13, 15, 16, 17, 19, 21, 22 | syl222anc 1254 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1))) |
24 | 12, 23 | mpbid 147 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1)) |
25 | nncn 8916 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
26 | 25 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ) |
27 | 26 | div1d 8726 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 1) = 𝐵) |
28 | 24, 27 | breqtrd 4026 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ 𝐵) |
29 | 2, 28 | eqbrtrd 4022 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4000 ‘cfv 5212 (class class class)co 5869 ℂcc 7800 ℝcr 7801 0cc0 7802 1c1 7803 < clt 7982 ≤ cle 7983 / cdiv 8618 ℕcn 8908 ℤcz 9242 gcd cgcd 11926 numercnumer 12164 denomcdenom 12165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-sup 6977 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-fz 9996 df-fzo 10129 df-fl 10256 df-mod 10309 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-dvds 11779 df-gcd 11927 df-numer 12166 df-denom 12167 |
This theorem is referenced by: qden1elz 12188 |
Copyright terms: Public domain | W3C validator |