ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddass2 GIF version

Theorem xaddass2 9656
Description: Associativity of extended real addition. See xaddass 9655 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1005 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ∈ ℝ*)
2 xnegcl 9618 . . . . . 6 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
31, 2syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ∈ ℝ*)
4 simp1r 1006 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ≠ +∞)
5 pnfxr 7821 . . . . . . . . 9 +∞ ∈ ℝ*
6 xneg11 9620 . . . . . . . . 9 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
71, 5, 6sylancl 409 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
87necon3bid 2349 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 ≠ -𝑒+∞ ↔ 𝐴 ≠ +∞))
94, 8mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -𝑒+∞)
10 xnegpnf 9614 . . . . . . 7 -𝑒+∞ = -∞
1110a1i 9 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒+∞ = -∞)
129, 11neeqtrd 2336 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -∞)
13 simp2l 1007 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ∈ ℝ*)
14 xnegcl 9618 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
1513, 14syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ∈ ℝ*)
16 simp2r 1008 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ≠ +∞)
17 xneg11 9620 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1813, 5, 17sylancl 409 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1918necon3bid 2349 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 ≠ -𝑒+∞ ↔ 𝐵 ≠ +∞))
2016, 19mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -𝑒+∞)
2120, 11neeqtrd 2336 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -∞)
22 simp3l 1009 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ∈ ℝ*)
23 xnegcl 9618 . . . . . 6 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
2422, 23syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ∈ ℝ*)
25 simp3r 1010 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ≠ +∞)
26 xneg11 9620 . . . . . . . . 9 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2722, 5, 26sylancl 409 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2827necon3bid 2349 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 ≠ -𝑒+∞ ↔ 𝐶 ≠ +∞))
2925, 28mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -𝑒+∞)
3029, 11neeqtrd 2336 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -∞)
31 xaddass 9655 . . . . 5 (((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (-𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐶 ≠ -∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
323, 12, 15, 21, 24, 30, 31syl222anc 1232 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
33 xnegdi 9654 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
341, 13, 33syl2anc 408 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
3534oveq1d 5789 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶))
36 xnegdi 9654 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3713, 22, 36syl2anc 408 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3837oveq2d 5790 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
3932, 35, 383eqtr4d 2182 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
40 xaddcl 9646 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
411, 13, 40syl2anc 408 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
42 xnegdi 9654 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
4341, 22, 42syl2anc 408 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
44 xaddcl 9646 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
4513, 22, 44syl2anc 408 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
46 xnegdi 9654 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
471, 45, 46syl2anc 408 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
4839, 43, 473eqtr4d 2182 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
49 xaddcl 9646 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
5041, 22, 49syl2anc 408 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
51 xaddcl 9646 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
521, 45, 51syl2anc 408 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
53 xneg11 9620 . . 3 ((((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ* ∧ (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5450, 52, 53syl2anc 408 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5548, 54mpbid 146 1 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wne 2308  (class class class)co 5774  +∞cpnf 7800  -∞cmnf 7801  *cxr 7802  -𝑒cxne 9559   +𝑒 cxad 9560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7805  df-mnf 7806  df-xr 7807  df-sub 7938  df-neg 7939  df-xneg 9562  df-xadd 9563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator