ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddass2 GIF version

Theorem xaddass2 9827
Description: Associativity of extended real addition. See xaddass 9826 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1016 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ∈ ℝ*)
2 xnegcl 9789 . . . . . 6 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
31, 2syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ∈ ℝ*)
4 simp1r 1017 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ≠ +∞)
5 pnfxr 7972 . . . . . . . . 9 +∞ ∈ ℝ*
6 xneg11 9791 . . . . . . . . 9 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
71, 5, 6sylancl 411 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
87necon3bid 2381 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 ≠ -𝑒+∞ ↔ 𝐴 ≠ +∞))
94, 8mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -𝑒+∞)
10 xnegpnf 9785 . . . . . . 7 -𝑒+∞ = -∞
1110a1i 9 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒+∞ = -∞)
129, 11neeqtrd 2368 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -∞)
13 simp2l 1018 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ∈ ℝ*)
14 xnegcl 9789 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
1513, 14syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ∈ ℝ*)
16 simp2r 1019 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ≠ +∞)
17 xneg11 9791 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1813, 5, 17sylancl 411 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1918necon3bid 2381 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 ≠ -𝑒+∞ ↔ 𝐵 ≠ +∞))
2016, 19mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -𝑒+∞)
2120, 11neeqtrd 2368 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -∞)
22 simp3l 1020 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ∈ ℝ*)
23 xnegcl 9789 . . . . . 6 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
2422, 23syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ∈ ℝ*)
25 simp3r 1021 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ≠ +∞)
26 xneg11 9791 . . . . . . . . 9 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2722, 5, 26sylancl 411 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2827necon3bid 2381 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 ≠ -𝑒+∞ ↔ 𝐶 ≠ +∞))
2925, 28mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -𝑒+∞)
3029, 11neeqtrd 2368 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -∞)
31 xaddass 9826 . . . . 5 (((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (-𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐶 ≠ -∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
323, 12, 15, 21, 24, 30, 31syl222anc 1249 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
33 xnegdi 9825 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
341, 13, 33syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
3534oveq1d 5868 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶))
36 xnegdi 9825 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3713, 22, 36syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3837oveq2d 5869 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
3932, 35, 383eqtr4d 2213 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
40 xaddcl 9817 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
411, 13, 40syl2anc 409 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
42 xnegdi 9825 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
4341, 22, 42syl2anc 409 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
44 xaddcl 9817 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
4513, 22, 44syl2anc 409 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
46 xnegdi 9825 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
471, 45, 46syl2anc 409 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
4839, 43, 473eqtr4d 2213 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
49 xaddcl 9817 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
5041, 22, 49syl2anc 409 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
51 xaddcl 9817 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
521, 45, 51syl2anc 409 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
53 xneg11 9791 . . 3 ((((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ* ∧ (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5450, 52, 53syl2anc 409 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5548, 54mpbid 146 1 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wne 2340  (class class class)co 5853  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953  -𝑒cxne 9726   +𝑒 cxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-sub 8092  df-neg 8093  df-xneg 9729  df-xadd 9730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator