ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddass2 GIF version

Theorem xaddass2 9797
Description: Associativity of extended real addition. See xaddass 9796 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1010 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ∈ ℝ*)
2 xnegcl 9759 . . . . . 6 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
31, 2syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ∈ ℝ*)
4 simp1r 1011 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐴 ≠ +∞)
5 pnfxr 7942 . . . . . . . . 9 +∞ ∈ ℝ*
6 xneg11 9761 . . . . . . . . 9 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
71, 5, 6sylancl 410 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 = -𝑒+∞ ↔ 𝐴 = +∞))
87necon3bid 2375 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 ≠ -𝑒+∞ ↔ 𝐴 ≠ +∞))
94, 8mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -𝑒+∞)
10 xnegpnf 9755 . . . . . . 7 -𝑒+∞ = -∞
1110a1i 9 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒+∞ = -∞)
129, 11neeqtrd 2362 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐴 ≠ -∞)
13 simp2l 1012 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ∈ ℝ*)
14 xnegcl 9759 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
1513, 14syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ∈ ℝ*)
16 simp2r 1013 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐵 ≠ +∞)
17 xneg11 9761 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1813, 5, 17sylancl 410 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 = -𝑒+∞ ↔ 𝐵 = +∞))
1918necon3bid 2375 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐵 ≠ -𝑒+∞ ↔ 𝐵 ≠ +∞))
2016, 19mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -𝑒+∞)
2120, 11neeqtrd 2362 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐵 ≠ -∞)
22 simp3l 1014 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ∈ ℝ*)
23 xnegcl 9759 . . . . . 6 (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*)
2422, 23syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ∈ ℝ*)
25 simp3r 1015 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → 𝐶 ≠ +∞)
26 xneg11 9761 . . . . . . . . 9 ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2722, 5, 26sylancl 410 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 = -𝑒+∞ ↔ 𝐶 = +∞))
2827necon3bid 2375 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐶 ≠ -𝑒+∞ ↔ 𝐶 ≠ +∞))
2925, 28mpbird 166 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -𝑒+∞)
3029, 11neeqtrd 2362 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒𝐶 ≠ -∞)
31 xaddass 9796 . . . . 5 (((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) ∧ (-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐵 ≠ -∞) ∧ (-𝑒𝐶 ∈ ℝ* ∧ -𝑒𝐶 ≠ -∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
323, 12, 15, 21, 24, 30, 31syl222anc 1243 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
33 xnegdi 9795 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
341, 13, 33syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
3534oveq1d 5851 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = ((-𝑒𝐴 +𝑒 -𝑒𝐵) +𝑒 -𝑒𝐶))
36 xnegdi 9795 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3713, 22, 36syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐵 +𝑒 𝐶) = (-𝑒𝐵 +𝑒 -𝑒𝐶))
3837oveq2d 5852 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 (-𝑒𝐵 +𝑒 -𝑒𝐶)))
3932, 35, 383eqtr4d 2207 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
40 xaddcl 9787 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
411, 13, 40syl2anc 409 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
42 xnegdi 9795 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
4341, 22, 42syl2anc 409 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (-𝑒(𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐶))
44 xaddcl 9787 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
4513, 22, 44syl2anc 409 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
46 xnegdi 9795 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
471, 45, 46syl2anc 409 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) = (-𝑒𝐴 +𝑒 -𝑒(𝐵 +𝑒 𝐶)))
4839, 43, 473eqtr4d 2207 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → -𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
49 xaddcl 9787 . . . 4 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
5041, 22, 49syl2anc 409 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ*)
51 xaddcl 9787 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ*) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
521, 45, 51syl2anc 409 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*)
53 xneg11 9761 . . 3 ((((𝐴 +𝑒 𝐵) +𝑒 𝐶) ∈ ℝ* ∧ (𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ∈ ℝ*) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5450, 52, 53syl2anc 409 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → (-𝑒((𝐴 +𝑒 𝐵) +𝑒 𝐶) = -𝑒(𝐴 +𝑒 (𝐵 +𝑒 𝐶)) ↔ ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))))
5548, 54mpbid 146 1 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  wne 2334  (class class class)co 5836  +∞cpnf 7921  -∞cmnf 7922  *cxr 7923  -𝑒cxne 9696   +𝑒 cxad 9697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-sub 8062  df-neg 8063  df-xneg 9699  df-xadd 9700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator