ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthlem GIF version

Theorem pockthlem 12286
Description: Lemma for pockthg 12287. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1 (𝜑𝐴 ∈ ℕ)
pockthg.2 (𝜑𝐵 ∈ ℕ)
pockthg.3 (𝜑𝐵 < 𝐴)
pockthg.4 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
pockthlem.5 (𝜑𝑃 ∈ ℙ)
pockthlem.6 (𝜑𝑃𝑁)
pockthlem.7 (𝜑𝑄 ∈ ℙ)
pockthlem.8 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ)
pockthlem.9 (𝜑𝐶 ∈ ℤ)
pockthlem.10 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1)
pockthlem.11 (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1)
Assertion
Ref Expression
pockthlem (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)))

Proof of Theorem pockthlem
StepHypRef Expression
1 pockthlem.7 . . . . . 6 (𝜑𝑄 ∈ ℙ)
2 prmnn 12042 . . . . . 6 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
31, 2syl 14 . . . . 5 (𝜑𝑄 ∈ ℕ)
4 pockthlem.8 . . . . . 6 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ)
54nnnn0d 9167 . . . . 5 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ0)
63, 5nnexpcld 10610 . . . 4 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℕ)
76nnzd 9312 . . 3 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ)
8 pockthlem.5 . . . . . 6 (𝜑𝑃 ∈ ℙ)
9 prmnn 12042 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
108, 9syl 14 . . . . 5 (𝜑𝑃 ∈ ℕ)
11 pockthlem.9 . . . . 5 (𝜑𝐶 ∈ ℤ)
1210nnzd 9312 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
13 gcddvds 11896 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑃))
1411, 12, 13syl2anc 409 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑃))
1514simpld 111 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝐶)
1611, 12gcdcld 11901 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝑃) ∈ ℕ0)
1716nn0zd 9311 . . . . . . . . 9 (𝜑 → (𝐶 gcd 𝑃) ∈ ℤ)
18 pockthg.4 . . . . . . . . . . . . . 14 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
19 pockthg.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ)
20 pockthg.2 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℕ)
2119, 20nnmulcld 8906 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
22 nnuz 9501 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
2321, 22eleqtrdi 2259 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 · 𝐵) ∈ (ℤ‘1))
24 eluzp1p1 9491 . . . . . . . . . . . . . . 15 ((𝐴 · 𝐵) ∈ (ℤ‘1) → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
2523, 24syl 14 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
2618, 25eqeltrd 2243 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘(1 + 1)))
27 df-2 8916 . . . . . . . . . . . . . 14 2 = (1 + 1)
2827fveq2i 5489 . . . . . . . . . . . . 13 (ℤ‘2) = (ℤ‘(1 + 1))
2926, 28eleqtrrdi 2260 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘2))
30 eluz2b2 9541 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
3129, 30sylib 121 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
3231simpld 111 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
3332nnzd 9312 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
3414simprd 113 . . . . . . . . 9 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝑃)
35 pockthlem.6 . . . . . . . . 9 (𝜑𝑃𝑁)
3617, 12, 33, 34, 35dvdstrd 11770 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝑁)
3732nnne0d 8902 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
38 simpr 109 . . . . . . . . . . 11 ((𝐶 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
3938necon3ai 2385 . . . . . . . . . 10 (𝑁 ≠ 0 → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
4037, 39syl 14 . . . . . . . . 9 (𝜑 → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
41 dvdslegcd 11897 . . . . . . . . 9 ((((𝐶 gcd 𝑃) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝑁 = 0)) → (((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑁) → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁)))
4217, 11, 33, 40, 41syl31anc 1231 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑁) → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁)))
4315, 36, 42mp2and 430 . . . . . . 7 (𝜑 → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁))
44 pockthlem.10 . . . . . . . . . 10 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1)
4544oveq1d 5857 . . . . . . . . 9 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = (1 gcd 𝑁))
46 1z 9217 . . . . . . . . . . . . . 14 1 ∈ ℤ
47 eluzp1m1 9489 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 + 1))) → (𝑁 − 1) ∈ (ℤ‘1))
4846, 26, 47sylancr 411 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ (ℤ‘1))
4948, 22eleqtrrdi 2260 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ)
5049nnnn0d 9167 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℕ0)
51 zexpcl 10470 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐶↑(𝑁 − 1)) ∈ ℤ)
5211, 50, 51syl2anc 409 . . . . . . . . . 10 (𝜑 → (𝐶↑(𝑁 − 1)) ∈ ℤ)
53 modgcd 11924 . . . . . . . . . 10 (((𝐶↑(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = ((𝐶↑(𝑁 − 1)) gcd 𝑁))
5452, 32, 53syl2anc 409 . . . . . . . . 9 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = ((𝐶↑(𝑁 − 1)) gcd 𝑁))
55 gcdcom 11906 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 gcd 𝑁) = (𝑁 gcd 1))
5646, 33, 55sylancr 411 . . . . . . . . . 10 (𝜑 → (1 gcd 𝑁) = (𝑁 gcd 1))
57 gcd1 11920 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1)
5833, 57syl 14 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 1) = 1)
5956, 58eqtrd 2198 . . . . . . . . 9 (𝜑 → (1 gcd 𝑁) = 1)
6045, 54, 593eqtr3d 2206 . . . . . . . 8 (𝜑 → ((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1)
61 rpexp 12085 . . . . . . . . 9 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ) → (((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1 ↔ (𝐶 gcd 𝑁) = 1))
6211, 33, 49, 61syl3anc 1228 . . . . . . . 8 (𝜑 → (((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1 ↔ (𝐶 gcd 𝑁) = 1))
6360, 62mpbid 146 . . . . . . 7 (𝜑 → (𝐶 gcd 𝑁) = 1)
6443, 63breqtrd 4008 . . . . . 6 (𝜑 → (𝐶 gcd 𝑃) ≤ 1)
6510nnne0d 8902 . . . . . . . . 9 (𝜑𝑃 ≠ 0)
66 simpr 109 . . . . . . . . . 10 ((𝐶 = 0 ∧ 𝑃 = 0) → 𝑃 = 0)
6766necon3ai 2385 . . . . . . . . 9 (𝑃 ≠ 0 → ¬ (𝐶 = 0 ∧ 𝑃 = 0))
6865, 67syl 14 . . . . . . . 8 (𝜑 → ¬ (𝐶 = 0 ∧ 𝑃 = 0))
69 gcdn0cl 11895 . . . . . . . 8 (((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝑃 = 0)) → (𝐶 gcd 𝑃) ∈ ℕ)
7011, 12, 68, 69syl21anc 1227 . . . . . . 7 (𝜑 → (𝐶 gcd 𝑃) ∈ ℕ)
71 nnle1eq1 8881 . . . . . . 7 ((𝐶 gcd 𝑃) ∈ ℕ → ((𝐶 gcd 𝑃) ≤ 1 ↔ (𝐶 gcd 𝑃) = 1))
7270, 71syl 14 . . . . . 6 (𝜑 → ((𝐶 gcd 𝑃) ≤ 1 ↔ (𝐶 gcd 𝑃) = 1))
7364, 72mpbid 146 . . . . 5 (𝜑 → (𝐶 gcd 𝑃) = 1)
74 odzcl 12175 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) → ((od𝑃)‘𝐶) ∈ ℕ)
7510, 11, 73, 74syl3anc 1228 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∈ ℕ)
7675nnzd 9312 . . 3 (𝜑 → ((od𝑃)‘𝐶) ∈ ℤ)
77 prmuz2 12063 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
788, 77syl 14 . . . . . . 7 (𝜑𝑃 ∈ (ℤ‘2))
7978, 28eleqtrdi 2259 . . . . . 6 (𝜑𝑃 ∈ (ℤ‘(1 + 1)))
80 eluzp1m1 9489 . . . . . 6 ((1 ∈ ℤ ∧ 𝑃 ∈ (ℤ‘(1 + 1))) → (𝑃 − 1) ∈ (ℤ‘1))
8146, 79, 80sylancr 411 . . . . 5 (𝜑 → (𝑃 − 1) ∈ (ℤ‘1))
8281, 22eleqtrrdi 2260 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℕ)
8382nnzd 9312 . . 3 (𝜑 → (𝑃 − 1) ∈ ℤ)
8419nnzd 9312 . . . . . 6 (𝜑𝐴 ∈ ℤ)
8549nnzd 9312 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℤ)
86 pcdvds 12246 . . . . . . 7 ((𝑄 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴)
871, 19, 86syl2anc 409 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴)
8820nnzd 9312 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
89 dvdsmul1 11753 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
9084, 88, 89syl2anc 409 . . . . . . 7 (𝜑𝐴 ∥ (𝐴 · 𝐵))
9118oveq1d 5857 . . . . . . . 8 (𝜑 → (𝑁 − 1) = (((𝐴 · 𝐵) + 1) − 1))
9221nncnd 8871 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
93 ax-1cn 7846 . . . . . . . . 9 1 ∈ ℂ
94 pncan 8104 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 · 𝐵) + 1) − 1) = (𝐴 · 𝐵))
9592, 93, 94sylancl 410 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐵) + 1) − 1) = (𝐴 · 𝐵))
9691, 95eqtrd 2198 . . . . . . 7 (𝜑 → (𝑁 − 1) = (𝐴 · 𝐵))
9790, 96breqtrrd 4010 . . . . . 6 (𝜑𝐴 ∥ (𝑁 − 1))
987, 84, 85, 87, 97dvdstrd 11770 . . . . 5 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1))
996nnne0d 8902 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ≠ 0)
100 dvdsval2 11730 . . . . . 6 (((𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ (𝑄↑(𝑄 pCnt 𝐴)) ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ))
1017, 99, 85, 100syl3anc 1228 . . . . 5 (𝜑 → ((𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ))
10298, 101mpbid 146 . . . 4 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ)
103 peano2zm 9229 . . . . . . . 8 ((𝐶↑(𝑁 − 1)) ∈ ℤ → ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ)
10452, 103syl 14 . . . . . . 7 (𝜑 → ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ)
105 nnq 9571 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
10632, 105syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ ℚ)
10731simprd 113 . . . . . . . . . 10 (𝜑 → 1 < 𝑁)
108 q1mod 10291 . . . . . . . . . 10 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
109106, 107, 108syl2anc 409 . . . . . . . . 9 (𝜑 → (1 mod 𝑁) = 1)
11044, 109eqtr4d 2201 . . . . . . . 8 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁))
111 1zzd 9218 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
112 moddvds 11739 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐶↑(𝑁 − 1)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
11332, 52, 111, 112syl3anc 1228 . . . . . . . 8 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
114110, 113mpbid 146 . . . . . . 7 (𝜑𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1))
11512, 33, 104, 35, 114dvdstrd 11770 . . . . . 6 (𝜑𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1))
116 odzdvds 12177 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) ∧ (𝑁 − 1) ∈ ℕ0) → (𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (𝑁 − 1)))
11710, 11, 73, 50, 116syl31anc 1231 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (𝑁 − 1)))
118115, 117mpbid 146 . . . . 5 (𝜑 → ((od𝑃)‘𝐶) ∥ (𝑁 − 1))
11949nncnd 8871 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℂ)
1206nncnd 8871 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℂ)
1216nnap0d 8903 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) # 0)
122119, 120, 121divcanap1d 8687 . . . . 5 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) = (𝑁 − 1))
123118, 122breqtrrd 4010 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))))
124 nprmdvds1 12072 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
1258, 124syl 14 . . . . 5 (𝜑 → ¬ 𝑃 ∥ 1)
1263nnzd 9312 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℤ)
127 iddvdsexp 11755 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ (𝑄 pCnt 𝐴) ∈ ℕ) → 𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)))
128126, 4, 127syl2anc 409 . . . . . . . . . . . . 13 (𝜑𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)))
129126, 7, 85, 128, 98dvdstrd 11770 . . . . . . . . . . . 12 (𝜑𝑄 ∥ (𝑁 − 1))
1303nnne0d 8902 . . . . . . . . . . . . 13 (𝜑𝑄 ≠ 0)
131 dvdsval2 11730 . . . . . . . . . . . . 13 ((𝑄 ∈ ℤ ∧ 𝑄 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (𝑄 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 𝑄) ∈ ℤ))
132126, 130, 85, 131syl3anc 1228 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 𝑄) ∈ ℤ))
133129, 132mpbid 146 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) / 𝑄) ∈ ℤ)
13450nn0ge0d 9170 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 − 1))
13549nnred 8870 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℝ)
1363nnred 8870 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℝ)
1373nngt0d 8901 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑄)
138 ge0div 8766 . . . . . . . . . . . . 13 (((𝑁 − 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 0 < 𝑄) → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 𝑄)))
139135, 136, 137, 138syl3anc 1228 . . . . . . . . . . . 12 (𝜑 → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 𝑄)))
140134, 139mpbid 146 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((𝑁 − 1) / 𝑄))
141 elnn0z 9204 . . . . . . . . . . 11 (((𝑁 − 1) / 𝑄) ∈ ℕ0 ↔ (((𝑁 − 1) / 𝑄) ∈ ℤ ∧ 0 ≤ ((𝑁 − 1) / 𝑄)))
142133, 140, 141sylanbrc 414 . . . . . . . . . 10 (𝜑 → ((𝑁 − 1) / 𝑄) ∈ ℕ0)
143 zexpcl 10470 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ ((𝑁 − 1) / 𝑄) ∈ ℕ0) → (𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ)
14411, 142, 143syl2anc 409 . . . . . . . . 9 (𝜑 → (𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ)
145 peano2zm 9229 . . . . . . . . 9 ((𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ → ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ)
146144, 145syl 14 . . . . . . . 8 (𝜑 → ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ)
147 dvdsgcd 11945 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∧ 𝑃𝑁) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
14812, 146, 33, 147syl3anc 1228 . . . . . . 7 (𝜑 → ((𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∧ 𝑃𝑁) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
14935, 148mpan2d 425 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
150 odzdvds 12177 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) ∧ ((𝑁 − 1) / 𝑄) ∈ ℕ0) → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
15110, 11, 73, 142, 150syl31anc 1231 . . . . . . 7 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
1523nncnd 8871 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
1533nnap0d 8903 . . . . . . . . . . 11 (𝜑𝑄 # 0)
1544nnzd 9312 . . . . . . . . . . 11 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℤ)
155152, 153, 154expm1apd 10598 . . . . . . . . . 10 (𝜑 → (𝑄↑((𝑄 pCnt 𝐴) − 1)) = ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄))
156155oveq2d 5858 . . . . . . . . 9 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) = (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄)))
157135, 6nndivred 8907 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℝ)
158157recnd 7927 . . . . . . . . . 10 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℂ)
159158, 120, 152, 153divassapd 8722 . . . . . . . . 9 (𝜑 → ((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) / 𝑄) = (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄)))
160122oveq1d 5857 . . . . . . . . 9 (𝜑 → ((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) / 𝑄) = ((𝑁 − 1) / 𝑄))
161156, 159, 1603eqtr2d 2204 . . . . . . . 8 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) = ((𝑁 − 1) / 𝑄))
162161breq2d 3994 . . . . . . 7 (𝜑 → (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
163151, 162bitr4d 190 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1)))))
164 pockthlem.11 . . . . . . 7 (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1)
165164breq2d 3994 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) ↔ 𝑃 ∥ 1))
166149, 163, 1653imtr3d 201 . . . . 5 (𝜑 → (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) → 𝑃 ∥ 1))
167125, 166mtod 653 . . . 4 (𝜑 → ¬ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))))
168 prmpwdvds 12285 . . . 4 (((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ ∧ ((od𝑃)‘𝐶) ∈ ℤ) ∧ (𝑄 ∈ ℙ ∧ (𝑄 pCnt 𝐴) ∈ ℕ) ∧ (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) ∧ ¬ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))))) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶))
169102, 76, 1, 4, 123, 167, 168syl222anc 1244 . . 3 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶))
170 odzphi 12178 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) → ((od𝑃)‘𝐶) ∥ (ϕ‘𝑃))
17110, 11, 73, 170syl3anc 1228 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∥ (ϕ‘𝑃))
172 phiprm 12155 . . . . 5 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
1738, 172syl 14 . . . 4 (𝜑 → (ϕ‘𝑃) = (𝑃 − 1))
174171, 173breqtrd 4008 . . 3 (𝜑 → ((od𝑃)‘𝐶) ∥ (𝑃 − 1))
1757, 76, 83, 169, 174dvdstrd 11770 . 2 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1))
176 pcdvdsb 12251 . . 3 ((𝑄 ∈ ℙ ∧ (𝑃 − 1) ∈ ℤ ∧ (𝑄 pCnt 𝐴) ∈ ℕ0) → ((𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)) ↔ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
1771, 83, 5, 176syl3anc 1228 . 2 (𝜑 → ((𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)) ↔ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
178175, 177mpbird 166 1 (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  cn 8857  2c2 8908  0cn0 9114  cz 9191  cuz 9466  cq 9557   mod cmo 10257  cexp 10454  cdvds 11727   gcd cgcd 11875  cprime 12039  odcodz 12140  ϕcphi 12141   pCnt cpc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-2o 6385  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492  df-dvds 11728  df-gcd 11876  df-prm 12040  df-odz 12142  df-phi 12143  df-pc 12217
This theorem is referenced by:  pockthg  12287
  Copyright terms: Public domain W3C validator