ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthlem GIF version

Theorem pockthlem 12845
Description: Lemma for pockthg 12846. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1 (𝜑𝐴 ∈ ℕ)
pockthg.2 (𝜑𝐵 ∈ ℕ)
pockthg.3 (𝜑𝐵 < 𝐴)
pockthg.4 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
pockthlem.5 (𝜑𝑃 ∈ ℙ)
pockthlem.6 (𝜑𝑃𝑁)
pockthlem.7 (𝜑𝑄 ∈ ℙ)
pockthlem.8 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ)
pockthlem.9 (𝜑𝐶 ∈ ℤ)
pockthlem.10 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1)
pockthlem.11 (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1)
Assertion
Ref Expression
pockthlem (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)))

Proof of Theorem pockthlem
StepHypRef Expression
1 pockthlem.7 . . . . . 6 (𝜑𝑄 ∈ ℙ)
2 prmnn 12598 . . . . . 6 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
31, 2syl 14 . . . . 5 (𝜑𝑄 ∈ ℕ)
4 pockthlem.8 . . . . . 6 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ)
54nnnn0d 9390 . . . . 5 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℕ0)
63, 5nnexpcld 10884 . . . 4 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℕ)
76nnzd 9536 . . 3 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ)
8 pockthlem.5 . . . . . 6 (𝜑𝑃 ∈ ℙ)
9 prmnn 12598 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
108, 9syl 14 . . . . 5 (𝜑𝑃 ∈ ℕ)
11 pockthlem.9 . . . . 5 (𝜑𝐶 ∈ ℤ)
1210nnzd 9536 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
13 gcddvds 12450 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑃))
1411, 12, 13syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑃))
1514simpld 112 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝐶)
1611, 12gcdcld 12455 . . . . . . . . . 10 (𝜑 → (𝐶 gcd 𝑃) ∈ ℕ0)
1716nn0zd 9535 . . . . . . . . 9 (𝜑 → (𝐶 gcd 𝑃) ∈ ℤ)
18 pockthg.4 . . . . . . . . . . . . . 14 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
19 pockthg.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ)
20 pockthg.2 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℕ)
2119, 20nnmulcld 9127 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
22 nnuz 9726 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
2321, 22eleqtrdi 2302 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 · 𝐵) ∈ (ℤ‘1))
24 eluzp1p1 9716 . . . . . . . . . . . . . . 15 ((𝐴 · 𝐵) ∈ (ℤ‘1) → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
2523, 24syl 14 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
2618, 25eqeltrd 2286 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘(1 + 1)))
27 df-2 9137 . . . . . . . . . . . . . 14 2 = (1 + 1)
2827fveq2i 5606 . . . . . . . . . . . . 13 (ℤ‘2) = (ℤ‘(1 + 1))
2926, 28eleqtrrdi 2303 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘2))
30 eluz2b2 9766 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
3129, 30sylib 122 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
3231simpld 112 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
3332nnzd 9536 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
3414simprd 114 . . . . . . . . 9 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝑃)
35 pockthlem.6 . . . . . . . . 9 (𝜑𝑃𝑁)
3617, 12, 33, 34, 35dvdstrd 12307 . . . . . . . 8 (𝜑 → (𝐶 gcd 𝑃) ∥ 𝑁)
3732nnne0d 9123 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
38 simpr 110 . . . . . . . . . . 11 ((𝐶 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
3938necon3ai 2429 . . . . . . . . . 10 (𝑁 ≠ 0 → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
4037, 39syl 14 . . . . . . . . 9 (𝜑 → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
41 dvdslegcd 12451 . . . . . . . . 9 ((((𝐶 gcd 𝑃) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝑁 = 0)) → (((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑁) → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁)))
4217, 11, 33, 40, 41syl31anc 1255 . . . . . . . 8 (𝜑 → (((𝐶 gcd 𝑃) ∥ 𝐶 ∧ (𝐶 gcd 𝑃) ∥ 𝑁) → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁)))
4315, 36, 42mp2and 433 . . . . . . 7 (𝜑 → (𝐶 gcd 𝑃) ≤ (𝐶 gcd 𝑁))
44 pockthlem.10 . . . . . . . . . 10 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = 1)
4544oveq1d 5989 . . . . . . . . 9 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = (1 gcd 𝑁))
46 1z 9440 . . . . . . . . . . . . . 14 1 ∈ ℤ
47 eluzp1m1 9714 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 + 1))) → (𝑁 − 1) ∈ (ℤ‘1))
4846, 26, 47sylancr 414 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ (ℤ‘1))
4948, 22eleqtrrdi 2303 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ)
5049nnnn0d 9390 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ ℕ0)
51 zexpcl 10743 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐶↑(𝑁 − 1)) ∈ ℤ)
5211, 50, 51syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝐶↑(𝑁 − 1)) ∈ ℤ)
53 modgcd 12478 . . . . . . . . . 10 (((𝐶↑(𝑁 − 1)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = ((𝐶↑(𝑁 − 1)) gcd 𝑁))
5452, 32, 53syl2anc 411 . . . . . . . . 9 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) gcd 𝑁) = ((𝐶↑(𝑁 − 1)) gcd 𝑁))
55 gcdcom 12460 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 gcd 𝑁) = (𝑁 gcd 1))
5646, 33, 55sylancr 414 . . . . . . . . . 10 (𝜑 → (1 gcd 𝑁) = (𝑁 gcd 1))
57 gcd1 12474 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1)
5833, 57syl 14 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 1) = 1)
5956, 58eqtrd 2242 . . . . . . . . 9 (𝜑 → (1 gcd 𝑁) = 1)
6045, 54, 593eqtr3d 2250 . . . . . . . 8 (𝜑 → ((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1)
61 rpexp 12641 . . . . . . . . 9 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ) → (((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1 ↔ (𝐶 gcd 𝑁) = 1))
6211, 33, 49, 61syl3anc 1252 . . . . . . . 8 (𝜑 → (((𝐶↑(𝑁 − 1)) gcd 𝑁) = 1 ↔ (𝐶 gcd 𝑁) = 1))
6360, 62mpbid 147 . . . . . . 7 (𝜑 → (𝐶 gcd 𝑁) = 1)
6443, 63breqtrd 4088 . . . . . 6 (𝜑 → (𝐶 gcd 𝑃) ≤ 1)
6510nnne0d 9123 . . . . . . . . 9 (𝜑𝑃 ≠ 0)
66 simpr 110 . . . . . . . . . 10 ((𝐶 = 0 ∧ 𝑃 = 0) → 𝑃 = 0)
6766necon3ai 2429 . . . . . . . . 9 (𝑃 ≠ 0 → ¬ (𝐶 = 0 ∧ 𝑃 = 0))
6865, 67syl 14 . . . . . . . 8 (𝜑 → ¬ (𝐶 = 0 ∧ 𝑃 = 0))
69 gcdn0cl 12449 . . . . . . . 8 (((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝑃 = 0)) → (𝐶 gcd 𝑃) ∈ ℕ)
7011, 12, 68, 69syl21anc 1251 . . . . . . 7 (𝜑 → (𝐶 gcd 𝑃) ∈ ℕ)
71 nnle1eq1 9102 . . . . . . 7 ((𝐶 gcd 𝑃) ∈ ℕ → ((𝐶 gcd 𝑃) ≤ 1 ↔ (𝐶 gcd 𝑃) = 1))
7270, 71syl 14 . . . . . 6 (𝜑 → ((𝐶 gcd 𝑃) ≤ 1 ↔ (𝐶 gcd 𝑃) = 1))
7364, 72mpbid 147 . . . . 5 (𝜑 → (𝐶 gcd 𝑃) = 1)
74 odzcl 12732 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) → ((od𝑃)‘𝐶) ∈ ℕ)
7510, 11, 73, 74syl3anc 1252 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∈ ℕ)
7675nnzd 9536 . . 3 (𝜑 → ((od𝑃)‘𝐶) ∈ ℤ)
77 prmuz2 12619 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
788, 77syl 14 . . . . . . 7 (𝜑𝑃 ∈ (ℤ‘2))
7978, 28eleqtrdi 2302 . . . . . 6 (𝜑𝑃 ∈ (ℤ‘(1 + 1)))
80 eluzp1m1 9714 . . . . . 6 ((1 ∈ ℤ ∧ 𝑃 ∈ (ℤ‘(1 + 1))) → (𝑃 − 1) ∈ (ℤ‘1))
8146, 79, 80sylancr 414 . . . . 5 (𝜑 → (𝑃 − 1) ∈ (ℤ‘1))
8281, 22eleqtrrdi 2303 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℕ)
8382nnzd 9536 . . 3 (𝜑 → (𝑃 − 1) ∈ ℤ)
8419nnzd 9536 . . . . . 6 (𝜑𝐴 ∈ ℤ)
8549nnzd 9536 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℤ)
86 pcdvds 12804 . . . . . . 7 ((𝑄 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴)
871, 19, 86syl2anc 411 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ 𝐴)
8820nnzd 9536 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
89 dvdsmul1 12290 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
9084, 88, 89syl2anc 411 . . . . . . 7 (𝜑𝐴 ∥ (𝐴 · 𝐵))
9118oveq1d 5989 . . . . . . . 8 (𝜑 → (𝑁 − 1) = (((𝐴 · 𝐵) + 1) − 1))
9221nncnd 9092 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
93 ax-1cn 8060 . . . . . . . . 9 1 ∈ ℂ
94 pncan 8320 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 · 𝐵) + 1) − 1) = (𝐴 · 𝐵))
9592, 93, 94sylancl 413 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐵) + 1) − 1) = (𝐴 · 𝐵))
9691, 95eqtrd 2242 . . . . . . 7 (𝜑 → (𝑁 − 1) = (𝐴 · 𝐵))
9790, 96breqtrrd 4090 . . . . . 6 (𝜑𝐴 ∥ (𝑁 − 1))
987, 84, 85, 87, 97dvdstrd 12307 . . . . 5 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1))
996nnne0d 9123 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ≠ 0)
100 dvdsval2 12267 . . . . . 6 (((𝑄↑(𝑄 pCnt 𝐴)) ∈ ℤ ∧ (𝑄↑(𝑄 pCnt 𝐴)) ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ))
1017, 99, 85, 100syl3anc 1252 . . . . 5 (𝜑 → ((𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ))
10298, 101mpbid 147 . . . 4 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ)
103 peano2zm 9452 . . . . . . . 8 ((𝐶↑(𝑁 − 1)) ∈ ℤ → ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ)
10452, 103syl 14 . . . . . . 7 (𝜑 → ((𝐶↑(𝑁 − 1)) − 1) ∈ ℤ)
105 nnq 9796 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
10632, 105syl 14 . . . . . . . . . 10 (𝜑𝑁 ∈ ℚ)
10731simprd 114 . . . . . . . . . 10 (𝜑 → 1 < 𝑁)
108 q1mod 10545 . . . . . . . . . 10 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
109106, 107, 108syl2anc 411 . . . . . . . . 9 (𝜑 → (1 mod 𝑁) = 1)
11044, 109eqtr4d 2245 . . . . . . . 8 (𝜑 → ((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁))
111 1zzd 9441 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
112 moddvds 12276 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐶↑(𝑁 − 1)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
11332, 52, 111, 112syl3anc 1252 . . . . . . . 8 (𝜑 → (((𝐶↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1)))
114110, 113mpbid 147 . . . . . . 7 (𝜑𝑁 ∥ ((𝐶↑(𝑁 − 1)) − 1))
11512, 33, 104, 35, 114dvdstrd 12307 . . . . . 6 (𝜑𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1))
116 odzdvds 12734 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) ∧ (𝑁 − 1) ∈ ℕ0) → (𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (𝑁 − 1)))
11710, 11, 73, 50, 116syl31anc 1255 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑(𝑁 − 1)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (𝑁 − 1)))
118115, 117mpbid 147 . . . . 5 (𝜑 → ((od𝑃)‘𝐶) ∥ (𝑁 − 1))
11949nncnd 9092 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℂ)
1206nncnd 9092 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∈ ℂ)
1216nnap0d 9124 . . . . . 6 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) # 0)
122119, 120, 121divcanap1d 8906 . . . . 5 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) = (𝑁 − 1))
123118, 122breqtrrd 4090 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))))
124 nprmdvds1 12628 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
1258, 124syl 14 . . . . 5 (𝜑 → ¬ 𝑃 ∥ 1)
1263nnzd 9536 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℤ)
127 iddvdsexp 12292 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ (𝑄 pCnt 𝐴) ∈ ℕ) → 𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)))
128126, 4, 127syl2anc 411 . . . . . . . . . . . . 13 (𝜑𝑄 ∥ (𝑄↑(𝑄 pCnt 𝐴)))
129126, 7, 85, 128, 98dvdstrd 12307 . . . . . . . . . . . 12 (𝜑𝑄 ∥ (𝑁 − 1))
1303nnne0d 9123 . . . . . . . . . . . . 13 (𝜑𝑄 ≠ 0)
131 dvdsval2 12267 . . . . . . . . . . . . 13 ((𝑄 ∈ ℤ ∧ 𝑄 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (𝑄 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 𝑄) ∈ ℤ))
132126, 130, 85, 131syl3anc 1252 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 𝑄) ∈ ℤ))
133129, 132mpbid 147 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) / 𝑄) ∈ ℤ)
13450nn0ge0d 9393 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 − 1))
13549nnred 9091 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℝ)
1363nnred 9091 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℝ)
1373nngt0d 9122 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑄)
138 ge0div 8986 . . . . . . . . . . . . 13 (((𝑁 − 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 0 < 𝑄) → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 𝑄)))
139135, 136, 137, 138syl3anc 1252 . . . . . . . . . . . 12 (𝜑 → (0 ≤ (𝑁 − 1) ↔ 0 ≤ ((𝑁 − 1) / 𝑄)))
140134, 139mpbid 147 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((𝑁 − 1) / 𝑄))
141 elnn0z 9427 . . . . . . . . . . 11 (((𝑁 − 1) / 𝑄) ∈ ℕ0 ↔ (((𝑁 − 1) / 𝑄) ∈ ℤ ∧ 0 ≤ ((𝑁 − 1) / 𝑄)))
142133, 140, 141sylanbrc 417 . . . . . . . . . 10 (𝜑 → ((𝑁 − 1) / 𝑄) ∈ ℕ0)
143 zexpcl 10743 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ ((𝑁 − 1) / 𝑄) ∈ ℕ0) → (𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ)
14411, 142, 143syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ)
145 peano2zm 9452 . . . . . . . . 9 ((𝐶↑((𝑁 − 1) / 𝑄)) ∈ ℤ → ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ)
146144, 145syl 14 . . . . . . . 8 (𝜑 → ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ)
147 dvdsgcd 12499 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∧ 𝑃𝑁) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
14812, 146, 33, 147syl3anc 1252 . . . . . . 7 (𝜑 → ((𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ∧ 𝑃𝑁) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
14935, 148mpan2d 428 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) → 𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁)))
150 odzdvds 12734 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) ∧ ((𝑁 − 1) / 𝑄) ∈ ℕ0) → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
15110, 11, 73, 142, 150syl31anc 1255 . . . . . . 7 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
1523nncnd 9092 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
1533nnap0d 9124 . . . . . . . . . . 11 (𝜑𝑄 # 0)
1544nnzd 9536 . . . . . . . . . . 11 (𝜑 → (𝑄 pCnt 𝐴) ∈ ℤ)
155152, 153, 154expm1apd 10872 . . . . . . . . . 10 (𝜑 → (𝑄↑((𝑄 pCnt 𝐴) − 1)) = ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄))
156155oveq2d 5990 . . . . . . . . 9 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) = (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄)))
157135, 6nndivred 9128 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℝ)
158157recnd 8143 . . . . . . . . . 10 (𝜑 → ((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℂ)
159158, 120, 152, 153divassapd 8941 . . . . . . . . 9 (𝜑 → ((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) / 𝑄) = (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · ((𝑄↑(𝑄 pCnt 𝐴)) / 𝑄)))
160122oveq1d 5989 . . . . . . . . 9 (𝜑 → ((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) / 𝑄) = ((𝑁 − 1) / 𝑄))
161156, 159, 1603eqtr2d 2248 . . . . . . . 8 (𝜑 → (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) = ((𝑁 − 1) / 𝑄))
162161breq2d 4074 . . . . . . 7 (𝜑 → (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) ↔ ((od𝑃)‘𝐶) ∥ ((𝑁 − 1) / 𝑄)))
163151, 162bitr4d 191 . . . . . 6 (𝜑 → (𝑃 ∥ ((𝐶↑((𝑁 − 1) / 𝑄)) − 1) ↔ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1)))))
164 pockthlem.11 . . . . . . 7 (𝜑 → (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) = 1)
165164breq2d 4074 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝐶↑((𝑁 − 1) / 𝑄)) − 1) gcd 𝑁) ↔ 𝑃 ∥ 1))
166149, 163, 1653imtr3d 202 . . . . 5 (𝜑 → (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))) → 𝑃 ∥ 1))
167125, 166mtod 667 . . . 4 (𝜑 → ¬ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))))
168 prmpwdvds 12844 . . . 4 (((((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) ∈ ℤ ∧ ((od𝑃)‘𝐶) ∈ ℤ) ∧ (𝑄 ∈ ℙ ∧ (𝑄 pCnt 𝐴) ∈ ℕ) ∧ (((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑(𝑄 pCnt 𝐴))) ∧ ¬ ((od𝑃)‘𝐶) ∥ (((𝑁 − 1) / (𝑄↑(𝑄 pCnt 𝐴))) · (𝑄↑((𝑄 pCnt 𝐴) − 1))))) → (𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶))
169102, 76, 1, 4, 123, 167, 168syl222anc 1268 . . 3 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ ((od𝑃)‘𝐶))
170 odzphi 12735 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝑃) = 1) → ((od𝑃)‘𝐶) ∥ (ϕ‘𝑃))
17110, 11, 73, 170syl3anc 1252 . . . 4 (𝜑 → ((od𝑃)‘𝐶) ∥ (ϕ‘𝑃))
172 phiprm 12711 . . . . 5 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
1738, 172syl 14 . . . 4 (𝜑 → (ϕ‘𝑃) = (𝑃 − 1))
174171, 173breqtrd 4088 . . 3 (𝜑 → ((od𝑃)‘𝐶) ∥ (𝑃 − 1))
1757, 76, 83, 169, 174dvdstrd 12307 . 2 (𝜑 → (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1))
176 pcdvdsb 12809 . . 3 ((𝑄 ∈ ℙ ∧ (𝑃 − 1) ∈ ℤ ∧ (𝑄 pCnt 𝐴) ∈ ℕ0) → ((𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)) ↔ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
1771, 83, 5, 176syl3anc 1252 . 2 (𝜑 → ((𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)) ↔ (𝑄↑(𝑄 pCnt 𝐴)) ∥ (𝑃 − 1)))
178175, 177mpbird 167 1 (𝜑 → (𝑄 pCnt 𝐴) ≤ (𝑄 pCnt (𝑃 − 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wne 2380   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cle 8150  cmin 8285   / cdiv 8787  cn 9078  2c2 9129  0cn0 9337  cz 9414  cuz 9690  cq 9782   mod cmo 10511  cexp 10727  cdvds 12264   gcd cgcd 12440  cprime 12595  odcodz 12696  ϕcphi 12697   pCnt cpc 12773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-odz 12698  df-phi 12699  df-pc 12774
This theorem is referenced by:  pockthg  12846
  Copyright terms: Public domain W3C validator