ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6com GIF version

Theorem syl6com 35
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.)
Hypotheses
Ref Expression
syl6com.1 (𝜑 → (𝜓𝜒))
syl6com.2 (𝜒𝜃)
Assertion
Ref Expression
syl6com (𝜓 → (𝜑𝜃))

Proof of Theorem syl6com
StepHypRef Expression
1 syl6com.1 . . 3 (𝜑 → (𝜓𝜒))
2 syl6com.2 . . 3 (𝜒𝜃)
31, 2syl6 33 . 2 (𝜑 → (𝜓𝜃))
43com12 30 1 (𝜓 → (𝜑𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pclem6  1385  spimh  1748  ax16  1824  ax16i  1869  elres  4978  funcnvuni  5323  funrnex  6166  negf1o  8401  lidrididd  12965  dfgrp2  13099  rngdi  13436  rngdir  13437  basis2  14216  bj-inf2vnlem2  15463
  Copyright terms: Public domain W3C validator