ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6com GIF version

Theorem syl6com 35
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.)
Hypotheses
Ref Expression
syl6com.1 (𝜑 → (𝜓𝜒))
syl6com.2 (𝜒𝜃)
Assertion
Ref Expression
syl6com (𝜓 → (𝜑𝜃))

Proof of Theorem syl6com
StepHypRef Expression
1 syl6com.1 . . 3 (𝜑 → (𝜓𝜒))
2 syl6com.2 . . 3 (𝜒𝜃)
31, 2syl6 33 . 2 (𝜑 → (𝜓𝜃))
43com12 30 1 (𝜓 → (𝜑𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pclem6  1416  spimh  1783  ax16  1859  ax16i  1904  elres  5041  funcnvuni  5390  funrnex  6265  negf1o  8536  lidrididd  13423  dfgrp2  13568  rngdi  13911  rngdir  13912  basis2  14730  bj-inf2vnlem2  16358
  Copyright terms: Public domain W3C validator