| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidrididd | GIF version | ||
| Description: If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 13380) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| lidrideqd.l | ⊢ (𝜑 → 𝐿 ∈ 𝐵) |
| lidrideqd.r | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| lidrideqd.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) |
| lidrideqd.ri | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) |
| lidrideqd.b | ⊢ 𝐵 = (Base‘𝐺) |
| lidrideqd.p | ⊢ + = (+g‘𝐺) |
| lidrididd.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| lidrididd | ⊢ (𝜑 → 𝐿 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidrideqd.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | lidrididd.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | lidrideqd.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | lidrideqd.l | . 2 ⊢ (𝜑 → 𝐿 ∈ 𝐵) | |
| 5 | lidrideqd.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) | |
| 6 | oveq2 5982 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐿 + 𝑥) = (𝐿 + 𝑦)) | |
| 7 | id 19 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 8 | 6, 7 | eqeq12d 2224 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑦) = 𝑦)) |
| 9 | 8 | rspcv 2883 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥 → (𝐿 + 𝑦) = 𝑦)) |
| 10 | 5, 9 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐿 + 𝑦) = 𝑦) |
| 11 | lidrideqd.ri | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) | |
| 12 | lidrideqd.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 13 | 4, 12, 5, 11 | lidrideqd 13380 | . . . 4 ⊢ (𝜑 → 𝐿 = 𝑅) |
| 14 | oveq1 5981 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 + 𝑅) = (𝑦 + 𝑅)) | |
| 15 | 14, 7 | eqeq12d 2224 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝑦 + 𝑅) = 𝑦)) |
| 16 | 15 | rspcv 2883 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 + 𝑅) = 𝑦)) |
| 17 | oveq2 5982 | . . . . . . . . 9 ⊢ (𝐿 = 𝑅 → (𝑦 + 𝐿) = (𝑦 + 𝑅)) | |
| 18 | 17 | adantl 277 | . . . . . . . 8 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝐿) = (𝑦 + 𝑅)) |
| 19 | simpl 109 | . . . . . . . 8 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝑅) = 𝑦) | |
| 20 | 18, 19 | eqtrd 2242 | . . . . . . 7 ⊢ (((𝑦 + 𝑅) = 𝑦 ∧ 𝐿 = 𝑅) → (𝑦 + 𝐿) = 𝑦) |
| 21 | 20 | ex 115 | . . . . . 6 ⊢ ((𝑦 + 𝑅) = 𝑦 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦)) |
| 22 | 16, 21 | syl6com 35 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 ∈ 𝐵 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦))) |
| 23 | 22 | com23 78 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥 → (𝐿 = 𝑅 → (𝑦 ∈ 𝐵 → (𝑦 + 𝐿) = 𝑦))) |
| 24 | 11, 13, 23 | sylc 62 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝑦 + 𝐿) = 𝑦)) |
| 25 | 24 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 + 𝐿) = 𝑦) |
| 26 | 1, 2, 3, 4, 10, 25 | ismgmid2 13379 | 1 ⊢ (𝜑 → 𝐿 = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ∀wral 2488 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 df-0g 13257 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |