ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidrididd GIF version

Theorem lidrididd 13381
Description: If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 13380) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
lidrideqd.l (𝜑𝐿𝐵)
lidrideqd.r (𝜑𝑅𝐵)
lidrideqd.li (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
lidrideqd.ri (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
lidrideqd.b 𝐵 = (Base‘𝐺)
lidrideqd.p + = (+g𝐺)
lidrididd.o 0 = (0g𝐺)
Assertion
Ref Expression
lidrididd (𝜑𝐿 = 0 )
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑅   𝑥, +
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   0 (𝑥)

Proof of Theorem lidrididd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lidrideqd.b . 2 𝐵 = (Base‘𝐺)
2 lidrididd.o . 2 0 = (0g𝐺)
3 lidrideqd.p . 2 + = (+g𝐺)
4 lidrideqd.l . 2 (𝜑𝐿𝐵)
5 lidrideqd.li . . 3 (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
6 oveq2 5982 . . . . 5 (𝑥 = 𝑦 → (𝐿 + 𝑥) = (𝐿 + 𝑦))
7 id 19 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
86, 7eqeq12d 2224 . . . 4 (𝑥 = 𝑦 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑦) = 𝑦))
98rspcv 2883 . . 3 (𝑦𝐵 → (∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥 → (𝐿 + 𝑦) = 𝑦))
105, 9mpan9 281 . 2 ((𝜑𝑦𝐵) → (𝐿 + 𝑦) = 𝑦)
11 lidrideqd.ri . . . 4 (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
12 lidrideqd.r . . . . 5 (𝜑𝑅𝐵)
134, 12, 5, 11lidrideqd 13380 . . . 4 (𝜑𝐿 = 𝑅)
14 oveq1 5981 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 + 𝑅) = (𝑦 + 𝑅))
1514, 7eqeq12d 2224 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝑦 + 𝑅) = 𝑦))
1615rspcv 2883 . . . . . 6 (𝑦𝐵 → (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 + 𝑅) = 𝑦))
17 oveq2 5982 . . . . . . . . 9 (𝐿 = 𝑅 → (𝑦 + 𝐿) = (𝑦 + 𝑅))
1817adantl 277 . . . . . . . 8 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝐿) = (𝑦 + 𝑅))
19 simpl 109 . . . . . . . 8 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝑅) = 𝑦)
2018, 19eqtrd 2242 . . . . . . 7 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝐿) = 𝑦)
2120ex 115 . . . . . 6 ((𝑦 + 𝑅) = 𝑦 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦))
2216, 21syl6com 35 . . . . 5 (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦𝐵 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦)))
2322com23 78 . . . 4 (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝐿 = 𝑅 → (𝑦𝐵 → (𝑦 + 𝐿) = 𝑦)))
2411, 13, 23sylc 62 . . 3 (𝜑 → (𝑦𝐵 → (𝑦 + 𝐿) = 𝑦))
2524imp 124 . 2 ((𝜑𝑦𝐵) → (𝑦 + 𝐿) = 𝑦)
261, 2, 3, 4, 10, 25ismgmid2 13379 1 (𝜑𝐿 = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-0g 13257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator