ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidrididd GIF version

Theorem lidrididd 12636
Description: If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 12635) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
lidrideqd.l (𝜑𝐿𝐵)
lidrideqd.r (𝜑𝑅𝐵)
lidrideqd.li (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
lidrideqd.ri (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
lidrideqd.b 𝐵 = (Base‘𝐺)
lidrideqd.p + = (+g𝐺)
lidrididd.o 0 = (0g𝐺)
Assertion
Ref Expression
lidrididd (𝜑𝐿 = 0 )
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑅   𝑥, +
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   0 (𝑥)

Proof of Theorem lidrididd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lidrideqd.b . 2 𝐵 = (Base‘𝐺)
2 lidrididd.o . 2 0 = (0g𝐺)
3 lidrideqd.p . 2 + = (+g𝐺)
4 lidrideqd.l . 2 (𝜑𝐿𝐵)
5 lidrideqd.li . . 3 (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
6 oveq2 5861 . . . . 5 (𝑥 = 𝑦 → (𝐿 + 𝑥) = (𝐿 + 𝑦))
7 id 19 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
86, 7eqeq12d 2185 . . . 4 (𝑥 = 𝑦 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑦) = 𝑦))
98rspcv 2830 . . 3 (𝑦𝐵 → (∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥 → (𝐿 + 𝑦) = 𝑦))
105, 9mpan9 279 . 2 ((𝜑𝑦𝐵) → (𝐿 + 𝑦) = 𝑦)
11 lidrideqd.ri . . . 4 (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
12 lidrideqd.r . . . . 5 (𝜑𝑅𝐵)
134, 12, 5, 11lidrideqd 12635 . . . 4 (𝜑𝐿 = 𝑅)
14 oveq1 5860 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 + 𝑅) = (𝑦 + 𝑅))
1514, 7eqeq12d 2185 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝑦 + 𝑅) = 𝑦))
1615rspcv 2830 . . . . . 6 (𝑦𝐵 → (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦 + 𝑅) = 𝑦))
17 oveq2 5861 . . . . . . . . 9 (𝐿 = 𝑅 → (𝑦 + 𝐿) = (𝑦 + 𝑅))
1817adantl 275 . . . . . . . 8 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝐿) = (𝑦 + 𝑅))
19 simpl 108 . . . . . . . 8 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝑅) = 𝑦)
2018, 19eqtrd 2203 . . . . . . 7 (((𝑦 + 𝑅) = 𝑦𝐿 = 𝑅) → (𝑦 + 𝐿) = 𝑦)
2120ex 114 . . . . . 6 ((𝑦 + 𝑅) = 𝑦 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦))
2216, 21syl6com 35 . . . . 5 (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝑦𝐵 → (𝐿 = 𝑅 → (𝑦 + 𝐿) = 𝑦)))
2322com23 78 . . . 4 (∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥 → (𝐿 = 𝑅 → (𝑦𝐵 → (𝑦 + 𝐿) = 𝑦)))
2411, 13, 23sylc 62 . . 3 (𝜑 → (𝑦𝐵 → (𝑦 + 𝐿) = 𝑦))
2524imp 123 . 2 ((𝜑𝑦𝐵) → (𝑦 + 𝐿) = 𝑦)
261, 2, 3, 4, 10, 25ismgmid2 12634 1 (𝜑𝐿 = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  0gc0g 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-0g 12598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator