ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvuni GIF version

Theorem funcnvuni 5366
Description: The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5358 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
funcnvuni (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
Distinct variable group:   𝑓,𝑔,𝐴

Proof of Theorem funcnvuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 4873 . . . . . . . 8 (𝑥 = 𝑣𝑥 = 𝑣)
21eqeq2d 2221 . . . . . . 7 (𝑥 = 𝑣 → (𝑧 = 𝑥𝑧 = 𝑣))
32cbvrexv 2746 . . . . . 6 (∃𝑥𝐴 𝑧 = 𝑥 ↔ ∃𝑣𝐴 𝑧 = 𝑣)
4 cnveq 4873 . . . . . . . . . . 11 (𝑓 = 𝑣𝑓 = 𝑣)
54funeqd 5316 . . . . . . . . . 10 (𝑓 = 𝑣 → (Fun 𝑓 ↔ Fun 𝑣))
6 sseq1 3227 . . . . . . . . . . . 12 (𝑓 = 𝑣 → (𝑓𝑔𝑣𝑔))
7 sseq2 3228 . . . . . . . . . . . 12 (𝑓 = 𝑣 → (𝑔𝑓𝑔𝑣))
86, 7orbi12d 797 . . . . . . . . . . 11 (𝑓 = 𝑣 → ((𝑓𝑔𝑔𝑓) ↔ (𝑣𝑔𝑔𝑣)))
98ralbidv 2510 . . . . . . . . . 10 (𝑓 = 𝑣 → (∀𝑔𝐴 (𝑓𝑔𝑔𝑓) ↔ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣)))
105, 9anbi12d 473 . . . . . . . . 9 (𝑓 = 𝑣 → ((Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) ↔ (Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣))))
1110rspcv 2883 . . . . . . . 8 (𝑣𝐴 → (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣))))
12 funeq 5314 . . . . . . . . . 10 (𝑧 = 𝑣 → (Fun 𝑧 ↔ Fun 𝑣))
1312biimprcd 160 . . . . . . . . 9 (Fun 𝑣 → (𝑧 = 𝑣 → Fun 𝑧))
14 sseq2 3228 . . . . . . . . . . . . . . 15 (𝑔 = 𝑥 → (𝑣𝑔𝑣𝑥))
15 sseq1 3227 . . . . . . . . . . . . . . 15 (𝑔 = 𝑥 → (𝑔𝑣𝑥𝑣))
1614, 15orbi12d 797 . . . . . . . . . . . . . 14 (𝑔 = 𝑥 → ((𝑣𝑔𝑔𝑣) ↔ (𝑣𝑥𝑥𝑣)))
1716rspcv 2883 . . . . . . . . . . . . 13 (𝑥𝐴 → (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑣𝑥𝑥𝑣)))
18 cnvss 4872 . . . . . . . . . . . . . . . 16 (𝑣𝑥𝑣𝑥)
19 cnvss 4872 . . . . . . . . . . . . . . . 16 (𝑥𝑣𝑥𝑣)
2018, 19orim12i 763 . . . . . . . . . . . . . . 15 ((𝑣𝑥𝑥𝑣) → (𝑣𝑥𝑥𝑣))
21 sseq12 3229 . . . . . . . . . . . . . . . . 17 ((𝑧 = 𝑣𝑤 = 𝑥) → (𝑧𝑤𝑣𝑥))
2221ancoms 268 . . . . . . . . . . . . . . . 16 ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑧𝑤𝑣𝑥))
23 sseq12 3229 . . . . . . . . . . . . . . . 16 ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑤𝑧𝑥𝑣))
2422, 23orbi12d 797 . . . . . . . . . . . . . . 15 ((𝑤 = 𝑥𝑧 = 𝑣) → ((𝑧𝑤𝑤𝑧) ↔ (𝑣𝑥𝑥𝑣)))
2520, 24syl5ibrcom 157 . . . . . . . . . . . . . 14 ((𝑣𝑥𝑥𝑣) → ((𝑤 = 𝑥𝑧 = 𝑣) → (𝑧𝑤𝑤𝑧)))
2625expd 258 . . . . . . . . . . . . 13 ((𝑣𝑥𝑥𝑣) → (𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧))))
2717, 26syl6com 35 . . . . . . . . . . . 12 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑥𝐴 → (𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧)))))
2827rexlimdv 2627 . . . . . . . . . . 11 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (∃𝑥𝐴 𝑤 = 𝑥 → (𝑧 = 𝑣 → (𝑧𝑤𝑤𝑧))))
2928com23 78 . . . . . . . . . 10 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑧 = 𝑣 → (∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
3029alrimdv 1902 . . . . . . . . 9 (∀𝑔𝐴 (𝑣𝑔𝑔𝑣) → (𝑧 = 𝑣 → ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
3113, 30anim12ii 343 . . . . . . . 8 ((Fun 𝑣 ∧ ∀𝑔𝐴 (𝑣𝑔𝑔𝑣)) → (𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
3211, 31syl6com 35 . . . . . . 7 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (𝑣𝐴 → (𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))))
3332rexlimdv 2627 . . . . . 6 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (∃𝑣𝐴 𝑧 = 𝑣 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
343, 33biimtrid 152 . . . . 5 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
3534alrimiv 1900 . . . 4 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
36 df-ral 2493 . . . . 5 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))))
37 vex 2782 . . . . . . . 8 𝑧 ∈ V
38 eqeq1 2216 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 = 𝑥𝑧 = 𝑥))
3938rexbidv 2511 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝑥 ↔ ∃𝑥𝐴 𝑧 = 𝑥))
4037, 39elab 2927 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} ↔ ∃𝑥𝐴 𝑧 = 𝑥)
41 eqeq1 2216 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 = 𝑥𝑤 = 𝑥))
4241rexbidv 2511 . . . . . . . . 9 (𝑦 = 𝑤 → (∃𝑥𝐴 𝑦 = 𝑥 ↔ ∃𝑥𝐴 𝑤 = 𝑥))
4342ralab 2943 . . . . . . . 8 (∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧) ↔ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))
4443anbi2i 457 . . . . . . 7 ((Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) ↔ (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧))))
4540, 44imbi12i 239 . . . . . 6 ((𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))) ↔ (∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
4645albii 1496 . . . . 5 (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} → (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧))) ↔ ∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))))
4736, 46bitr2i 185 . . . 4 (∀𝑧(∃𝑥𝐴 𝑧 = 𝑥 → (Fun 𝑧 ∧ ∀𝑤(∃𝑥𝐴 𝑤 = 𝑥 → (𝑧𝑤𝑤𝑧)))) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)))
4835, 47sylib 122 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)))
49 fununi 5365 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (Fun 𝑧 ∧ ∀𝑤 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥} (𝑧𝑤𝑤𝑧)) → Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
5048, 49syl 14 . 2 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
51 cnvuni 4885 . . . 4 𝐴 = 𝑥𝐴 𝑥
52 vex 2782 . . . . . 6 𝑥 ∈ V
5352cnvex 5243 . . . . 5 𝑥 ∈ V
5453dfiun2 3978 . . . 4 𝑥𝐴 𝑥 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥}
5551, 54eqtri 2230 . . 3 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥}
5655funeqi 5315 . 2 (Fun 𝐴 ↔ Fun {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝑥})
5750, 56sylibr 134 1 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  wal 1373   = wceq 1375  wcel 2180  {cab 2195  wral 2488  wrex 2489  wss 3177   cuni 3867   ciun 3944  ccnv 4695  Fun wfun 5288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-fun 5296
This theorem is referenced by:  fun11uni  5367
  Copyright terms: Public domain W3C validator