ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax16 GIF version

Theorem ax16 1837
Description: Theorem showing that ax-16 1838 is redundant if ax-17 1550 is included in the axiom system. The important part of the proof is provided by aev 1836.

See ax16ALT 1883 for an alternate proof that does not require ax-10 1529 or ax12 1536.

This theorem should not be referenced in any proof. Instead, use ax-16 1838 below so that theorems needing ax-16 1838 can be more easily identified. (Contributed by NM, 8-Nov-2006.)

Assertion
Ref Expression
ax16 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax16
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 aev 1836 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑧)
2 ax-17 1550 . . . 4 (𝜑 → ∀𝑧𝜑)
3 sbequ12 1795 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
43biimpcd 159 . . . 4 (𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑥]𝜑))
52, 4alimdh 1491 . . 3 (𝜑 → (∀𝑧 𝑥 = 𝑧 → ∀𝑧[𝑧 / 𝑥]𝜑))
62hbsb3 1832 . . . 4 ([𝑧 / 𝑥]𝜑 → ∀𝑥[𝑧 / 𝑥]𝜑)
7 stdpc7 1794 . . . 4 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑𝜑))
86, 2, 7cbv3h 1767 . . 3 (∀𝑧[𝑧 / 𝑥]𝜑 → ∀𝑥𝜑)
95, 8syl6com 35 . 2 (∀𝑧 𝑥 = 𝑧 → (𝜑 → ∀𝑥𝜑))
101, 9syl 14 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  dveeq2  1839  dveeq2or  1840  a16g  1888  exists2  2152
  Copyright terms: Public domain W3C validator