| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax16 | GIF version | ||
| Description: Theorem showing that ax-16 1828 is redundant if ax-17 1540 is included in the
       axiom system.  The important part of the proof is provided by aev 1826.
 See ax16ALT 1873 for an alternate proof that does not require ax-10 1519 or ax12 1526. This theorem should not be referenced in any proof. Instead, use ax-16 1828 below so that theorems needing ax-16 1828 can be more easily identified. (Contributed by NM, 8-Nov-2006.)  | 
| Ref | Expression | 
|---|---|
| ax16 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | aev 1826 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑧) | |
| 2 | ax-17 1540 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 3 | sbequ12 1785 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 4 | 3 | biimpcd 159 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑥]𝜑)) | 
| 5 | 2, 4 | alimdh 1481 | . . 3 ⊢ (𝜑 → (∀𝑧 𝑥 = 𝑧 → ∀𝑧[𝑧 / 𝑥]𝜑)) | 
| 6 | 2 | hbsb3 1822 | . . . 4 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑥[𝑧 / 𝑥]𝜑) | 
| 7 | stdpc7 1784 | . . . 4 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑 → 𝜑)) | |
| 8 | 6, 2, 7 | cbv3h 1757 | . . 3 ⊢ (∀𝑧[𝑧 / 𝑥]𝜑 → ∀𝑥𝜑) | 
| 9 | 5, 8 | syl6com 35 | . 2 ⊢ (∀𝑧 𝑥 = 𝑧 → (𝜑 → ∀𝑥𝜑)) | 
| 10 | 1, 9 | syl 14 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: dveeq2 1829 dveeq2or 1830 a16g 1878 exists2 2142 | 
| Copyright terms: Public domain | W3C validator |