Proof of Theorem ax16i
| Step | Hyp | Ref
| Expression |
| 1 | | ax-17 1540 |
. . . 4
⊢ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) |
| 2 | | ax-17 1540 |
. . . 4
⊢ (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) |
| 3 | | ax-8 1518 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑧 = 𝑦)) |
| 4 | 1, 2, 3 | cbv3h 1757 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑦) |
| 5 | | ax-8 1518 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) |
| 6 | 5 | spimv 1825 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦) |
| 7 | | equid 1715 |
. . . . . . . 8
⊢ 𝑥 = 𝑥 |
| 8 | | ax-8 1518 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) |
| 9 | 7, 8 | mpi 15 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| 10 | | equid 1715 |
. . . . . . . . 9
⊢ 𝑧 = 𝑧 |
| 11 | | ax-8 1518 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑧 → 𝑦 = 𝑧)) |
| 12 | 10, 11 | mpi 15 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → 𝑦 = 𝑧) |
| 13 | | ax-8 1518 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑦 = 𝑥 → 𝑧 = 𝑥)) |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑦 = 𝑥 → 𝑧 = 𝑥)) |
| 15 | 9, 14 | syl5com 29 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
| 16 | 1, 15 | alimdh 1481 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥)) |
| 17 | 6, 16 | mpcom 36 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥) |
| 18 | | ax-8 1518 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑧 → 𝑥 = 𝑧)) |
| 19 | 10, 18 | mpi 15 |
. . . . 5
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) |
| 20 | 19 | alimi 1469 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → ∀𝑧 𝑥 = 𝑧) |
| 21 | 17, 20 | syl 14 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑥 = 𝑧) |
| 22 | 4, 21 | syl 14 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑧) |
| 23 | | ax-17 1540 |
. . . 4
⊢ (𝜑 → ∀𝑧𝜑) |
| 24 | | ax16i.1 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 25 | 24 | biimpcd 159 |
. . . 4
⊢ (𝜑 → (𝑥 = 𝑧 → 𝜓)) |
| 26 | 23, 25 | alimdh 1481 |
. . 3
⊢ (𝜑 → (∀𝑧 𝑥 = 𝑧 → ∀𝑧𝜓)) |
| 27 | | ax16i.2 |
. . . 4
⊢ (𝜓 → ∀𝑥𝜓) |
| 28 | 24 | biimprd 158 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜓 → 𝜑)) |
| 29 | 19, 28 | syl 14 |
. . . 4
⊢ (𝑧 = 𝑥 → (𝜓 → 𝜑)) |
| 30 | 27, 23, 29 | cbv3h 1757 |
. . 3
⊢
(∀𝑧𝜓 → ∀𝑥𝜑) |
| 31 | 26, 30 | syl6com 35 |
. 2
⊢
(∀𝑧 𝑥 = 𝑧 → (𝜑 → ∀𝑥𝜑)) |
| 32 | 22, 31 | syl 14 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |