ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax16i GIF version

Theorem ax16i 1851
Description: Inference with ax-16 1807 as its conclusion, that does not require ax-10 1498, ax-11 1499, or ax12 1505 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. (Contributed by NM, 20-May-2008.)
Hypotheses
Ref Expression
ax16i.1 (𝑥 = 𝑧 → (𝜑𝜓))
ax16i.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
ax16i (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem ax16i
StepHypRef Expression
1 ax-17 1519 . . . 4 (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
2 ax-17 1519 . . . 4 (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)
3 ax-8 1497 . . . 4 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
41, 2, 3cbv3h 1736 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑦)
5 ax-8 1497 . . . . . 6 (𝑧 = 𝑥 → (𝑧 = 𝑦𝑥 = 𝑦))
65spimv 1804 . . . . 5 (∀𝑧 𝑧 = 𝑦𝑥 = 𝑦)
7 equid 1694 . . . . . . . 8 𝑥 = 𝑥
8 ax-8 1497 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝑥𝑦 = 𝑥))
97, 8mpi 15 . . . . . . 7 (𝑥 = 𝑦𝑦 = 𝑥)
10 equid 1694 . . . . . . . . 9 𝑧 = 𝑧
11 ax-8 1497 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 = 𝑧𝑦 = 𝑧))
1210, 11mpi 15 . . . . . . . 8 (𝑧 = 𝑦𝑦 = 𝑧)
13 ax-8 1497 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 = 𝑥𝑧 = 𝑥))
1412, 13syl 14 . . . . . . 7 (𝑧 = 𝑦 → (𝑦 = 𝑥𝑧 = 𝑥))
159, 14syl5com 29 . . . . . 6 (𝑥 = 𝑦 → (𝑧 = 𝑦𝑧 = 𝑥))
161, 15alimdh 1460 . . . . 5 (𝑥 = 𝑦 → (∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥))
176, 16mpcom 36 . . . 4 (∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥)
18 ax-8 1497 . . . . . 6 (𝑧 = 𝑥 → (𝑧 = 𝑧𝑥 = 𝑧))
1910, 18mpi 15 . . . . 5 (𝑧 = 𝑥𝑥 = 𝑧)
2019alimi 1448 . . . 4 (∀𝑧 𝑧 = 𝑥 → ∀𝑧 𝑥 = 𝑧)
2117, 20syl 14 . . 3 (∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑥 = 𝑧)
224, 21syl 14 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑧)
23 ax-17 1519 . . . 4 (𝜑 → ∀𝑧𝜑)
24 ax16i.1 . . . . 5 (𝑥 = 𝑧 → (𝜑𝜓))
2524biimpcd 158 . . . 4 (𝜑 → (𝑥 = 𝑧𝜓))
2623, 25alimdh 1460 . . 3 (𝜑 → (∀𝑧 𝑥 = 𝑧 → ∀𝑧𝜓))
27 ax16i.2 . . . 4 (𝜓 → ∀𝑥𝜓)
2824biimprd 157 . . . . 5 (𝑥 = 𝑧 → (𝜓𝜑))
2919, 28syl 14 . . . 4 (𝑧 = 𝑥 → (𝜓𝜑))
3027, 23, 29cbv3h 1736 . . 3 (∀𝑧𝜓 → ∀𝑥𝜑)
3126, 30syl6com 35 . 2 (∀𝑧 𝑥 = 𝑧 → (𝜑 → ∀𝑥𝜑))
3222, 31syl 14 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  ax16ALT  1852
  Copyright terms: Public domain W3C validator