Proof of Theorem ax16i
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-17 1540 | 
. . . 4
⊢ (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) | 
| 2 |   | ax-17 1540 | 
. . . 4
⊢ (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) | 
| 3 |   | ax-8 1518 | 
. . . 4
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑧 = 𝑦)) | 
| 4 | 1, 2, 3 | cbv3h 1757 | 
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑦) | 
| 5 |   | ax-8 1518 | 
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) | 
| 6 | 5 | spimv 1825 | 
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦) | 
| 7 |   | equid 1715 | 
. . . . . . . 8
⊢ 𝑥 = 𝑥 | 
| 8 |   | ax-8 1518 | 
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) | 
| 9 | 7, 8 | mpi 15 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | 
| 10 |   | equid 1715 | 
. . . . . . . . 9
⊢ 𝑧 = 𝑧 | 
| 11 |   | ax-8 1518 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 = 𝑧 → 𝑦 = 𝑧)) | 
| 12 | 10, 11 | mpi 15 | 
. . . . . . . 8
⊢ (𝑧 = 𝑦 → 𝑦 = 𝑧) | 
| 13 |   | ax-8 1518 | 
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑦 = 𝑥 → 𝑧 = 𝑥)) | 
| 14 | 12, 13 | syl 14 | 
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑦 = 𝑥 → 𝑧 = 𝑥)) | 
| 15 | 9, 14 | syl5com 29 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) | 
| 16 | 1, 15 | alimdh 1481 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥)) | 
| 17 | 6, 16 | mpcom 36 | 
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥) | 
| 18 |   | ax-8 1518 | 
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑧 → 𝑥 = 𝑧)) | 
| 19 | 10, 18 | mpi 15 | 
. . . . 5
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) | 
| 20 | 19 | alimi 1469 | 
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → ∀𝑧 𝑥 = 𝑧) | 
| 21 | 17, 20 | syl 14 | 
. . 3
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑥 = 𝑧) | 
| 22 | 4, 21 | syl 14 | 
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑧) | 
| 23 |   | ax-17 1540 | 
. . . 4
⊢ (𝜑 → ∀𝑧𝜑) | 
| 24 |   | ax16i.1 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | 
| 25 | 24 | biimpcd 159 | 
. . . 4
⊢ (𝜑 → (𝑥 = 𝑧 → 𝜓)) | 
| 26 | 23, 25 | alimdh 1481 | 
. . 3
⊢ (𝜑 → (∀𝑧 𝑥 = 𝑧 → ∀𝑧𝜓)) | 
| 27 |   | ax16i.2 | 
. . . 4
⊢ (𝜓 → ∀𝑥𝜓) | 
| 28 | 24 | biimprd 158 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜓 → 𝜑)) | 
| 29 | 19, 28 | syl 14 | 
. . . 4
⊢ (𝑧 = 𝑥 → (𝜓 → 𝜑)) | 
| 30 | 27, 23, 29 | cbv3h 1757 | 
. . 3
⊢
(∀𝑧𝜓 → ∀𝑥𝜑) | 
| 31 | 26, 30 | syl6com 35 | 
. 2
⊢
(∀𝑧 𝑥 = 𝑧 → (𝜑 → ∀𝑥𝜑)) | 
| 32 | 22, 31 | syl 14 | 
1
⊢
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |