ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basis2 GIF version

Theorem basis2 13633
Description: Property of a basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
basis2 (((𝐵 ∈ TopBases ∧ 𝐶𝐵) ∧ (𝐷𝐵𝐴 ∈ (𝐶𝐷))) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem basis2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasis2g 13630 . . . . 5 (𝐵 ∈ TopBases → (𝐵 ∈ TopBases ↔ ∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧))))
21ibi 176 . . . 4 (𝐵 ∈ TopBases → ∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)))
3 ineq1 3331 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑧) = (𝐶𝑧))
4 sseq2 3181 . . . . . . . . . 10 ((𝑦𝑧) = (𝐶𝑧) → (𝑥 ⊆ (𝑦𝑧) ↔ 𝑥 ⊆ (𝐶𝑧)))
54anbi2d 464 . . . . . . . . 9 ((𝑦𝑧) = (𝐶𝑧) → ((𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
65rexbidv 2478 . . . . . . . 8 ((𝑦𝑧) = (𝐶𝑧) → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
76raleqbi1dv 2681 . . . . . . 7 ((𝑦𝑧) = (𝐶𝑧) → (∀𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
83, 7syl 14 . . . . . 6 (𝑦 = 𝐶 → (∀𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
9 ineq2 3332 . . . . . . 7 (𝑧 = 𝐷 → (𝐶𝑧) = (𝐶𝐷))
10 sseq2 3181 . . . . . . . . . 10 ((𝐶𝑧) = (𝐶𝐷) → (𝑥 ⊆ (𝐶𝑧) ↔ 𝑥 ⊆ (𝐶𝐷)))
1110anbi2d 464 . . . . . . . . 9 ((𝐶𝑧) = (𝐶𝐷) → ((𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
1211rexbidv 2478 . . . . . . . 8 ((𝐶𝑧) = (𝐶𝐷) → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
1312raleqbi1dv 2681 . . . . . . 7 ((𝐶𝑧) = (𝐶𝐷) → (∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
149, 13syl 14 . . . . . 6 (𝑧 = 𝐷 → (∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
158, 14rspc2v 2856 . . . . 5 ((𝐶𝐵𝐷𝐵) → (∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) → ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
16 eleq1 2240 . . . . . . . 8 (𝑤 = 𝐴 → (𝑤𝑥𝐴𝑥))
1716anbi1d 465 . . . . . . 7 (𝑤 = 𝐴 → ((𝑤𝑥𝑥 ⊆ (𝐶𝐷)) ↔ (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
1817rexbidv 2478 . . . . . 6 (𝑤 = 𝐴 → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷)) ↔ ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
1918rspccv 2840 . . . . 5 (∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷)) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
2015, 19syl6com 35 . . . 4 (∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) → ((𝐶𝐵𝐷𝐵) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))))
212, 20syl 14 . . 3 (𝐵 ∈ TopBases → ((𝐶𝐵𝐷𝐵) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))))
2221expd 258 . 2 (𝐵 ∈ TopBases → (𝐶𝐵 → (𝐷𝐵 → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))))
2322imp43 355 1 (((𝐵 ∈ TopBases ∧ 𝐶𝐵) ∧ (𝐷𝐵𝐴 ∈ (𝐶𝐷))) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cin 3130  wss 3131  TopBasesctb 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-uni 3812  df-bases 13628
This theorem is referenced by:  tgcl  13649  restbasg  13753  txbas  13843  tgioo  14131
  Copyright terms: Public domain W3C validator