ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basis2 GIF version

Theorem basis2 14368
Description: Property of a basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
basis2 (((𝐵 ∈ TopBases ∧ 𝐶𝐵) ∧ (𝐷𝐵𝐴 ∈ (𝐶𝐷))) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem basis2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasis2g 14365 . . . . 5 (𝐵 ∈ TopBases → (𝐵 ∈ TopBases ↔ ∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧))))
21ibi 176 . . . 4 (𝐵 ∈ TopBases → ∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)))
3 ineq1 3358 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑧) = (𝐶𝑧))
4 sseq2 3208 . . . . . . . . . 10 ((𝑦𝑧) = (𝐶𝑧) → (𝑥 ⊆ (𝑦𝑧) ↔ 𝑥 ⊆ (𝐶𝑧)))
54anbi2d 464 . . . . . . . . 9 ((𝑦𝑧) = (𝐶𝑧) → ((𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
65rexbidv 2498 . . . . . . . 8 ((𝑦𝑧) = (𝐶𝑧) → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
76raleqbi1dv 2705 . . . . . . 7 ((𝑦𝑧) = (𝐶𝑧) → (∀𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
83, 7syl 14 . . . . . 6 (𝑦 = 𝐶 → (∀𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) ↔ ∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧))))
9 ineq2 3359 . . . . . . 7 (𝑧 = 𝐷 → (𝐶𝑧) = (𝐶𝐷))
10 sseq2 3208 . . . . . . . . . 10 ((𝐶𝑧) = (𝐶𝐷) → (𝑥 ⊆ (𝐶𝑧) ↔ 𝑥 ⊆ (𝐶𝐷)))
1110anbi2d 464 . . . . . . . . 9 ((𝐶𝑧) = (𝐶𝐷) → ((𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
1211rexbidv 2498 . . . . . . . 8 ((𝐶𝑧) = (𝐶𝐷) → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
1312raleqbi1dv 2705 . . . . . . 7 ((𝐶𝑧) = (𝐶𝐷) → (∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
149, 13syl 14 . . . . . 6 (𝑧 = 𝐷 → (∀𝑤 ∈ (𝐶𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝑧)) ↔ ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
158, 14rspc2v 2881 . . . . 5 ((𝐶𝐵𝐷𝐵) → (∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) → ∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷))))
16 eleq1 2259 . . . . . . . 8 (𝑤 = 𝐴 → (𝑤𝑥𝐴𝑥))
1716anbi1d 465 . . . . . . 7 (𝑤 = 𝐴 → ((𝑤𝑥𝑥 ⊆ (𝐶𝐷)) ↔ (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
1817rexbidv 2498 . . . . . 6 (𝑤 = 𝐴 → (∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷)) ↔ ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
1918rspccv 2865 . . . . 5 (∀𝑤 ∈ (𝐶𝐷)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝐶𝐷)) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))
2015, 19syl6com 35 . . . 4 (∀𝑦𝐵𝑧𝐵𝑤 ∈ (𝑦𝑧)∃𝑥𝐵 (𝑤𝑥𝑥 ⊆ (𝑦𝑧)) → ((𝐶𝐵𝐷𝐵) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))))
212, 20syl 14 . . 3 (𝐵 ∈ TopBases → ((𝐶𝐵𝐷𝐵) → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))))
2221expd 258 . 2 (𝐵 ∈ TopBases → (𝐶𝐵 → (𝐷𝐵 → (𝐴 ∈ (𝐶𝐷) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷))))))
2322imp43 355 1 (((𝐵 ∈ TopBases ∧ 𝐶𝐵) ∧ (𝐷𝐵𝐴 ∈ (𝐶𝐷))) → ∃𝑥𝐵 (𝐴𝑥𝑥 ⊆ (𝐶𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cin 3156  wss 3157  TopBasesctb 14362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608  df-uni 3841  df-bases 14363
This theorem is referenced by:  tgcl  14384  restbasg  14488  txbas  14578  tgioo  14874
  Copyright terms: Public domain W3C validator