Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl56 | GIF version |
Description: Combine syl5 32 and syl6 33. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (𝜑 → 𝜓) |
syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
syl56.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | 2, 3 | syl6 33 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
5 | 1, 4 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: cbv2h 1736 cbv2w 1738 euind 2913 reuind 2931 sbcimdv 3016 cores 5107 prnmaxl 7429 prnminu 7430 pc2dvds 12261 |
Copyright terms: Public domain | W3C validator |