ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negf1o GIF version

Theorem negf1o 8011
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negf1o (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem negf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . . 3 𝐹 = (𝑥𝐴 ↦ -𝑥)
2 ssel 3041 . . . . . 6 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
3 renegcl 7894 . . . . . 6 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
42, 3syl6 33 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ ℝ))
54imp 123 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ ℝ)
62imp 123 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
7 recn 7625 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
8 negneg 7883 . . . . . . . . . 10 (𝑥 ∈ ℂ → --𝑥 = 𝑥)
98eqcomd 2105 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥 = --𝑥)
107, 9syl 14 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 = --𝑥)
1110eleq1d 2168 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥𝐴 ↔ --𝑥𝐴))
1211biimpcd 158 . . . . . 6 (𝑥𝐴 → (𝑥 ∈ ℝ → --𝑥𝐴))
1312adantl 273 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝑥 ∈ ℝ → --𝑥𝐴))
146, 13mpd 13 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → --𝑥𝐴)
15 negeq 7826 . . . . . 6 (𝑛 = -𝑥 → -𝑛 = --𝑥)
1615eleq1d 2168 . . . . 5 (𝑛 = -𝑥 → (-𝑛𝐴 ↔ --𝑥𝐴))
1716elrab 2793 . . . 4 (-𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (-𝑥 ∈ ℝ ∧ --𝑥𝐴))
185, 14, 17sylanbrc 411 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})
19 negeq 7826 . . . . . . 7 (𝑛 = 𝑦 → -𝑛 = -𝑦)
2019eleq1d 2168 . . . . . 6 (𝑛 = 𝑦 → (-𝑛𝐴 ↔ -𝑦𝐴))
2120elrab 2793 . . . . 5 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (𝑦 ∈ ℝ ∧ -𝑦𝐴))
22 simpr 109 . . . . . 6 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴)
2322a1i 9 . . . . 5 (𝐴 ⊆ ℝ → ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴))
2421, 23syl5bi 151 . . . 4 (𝐴 ⊆ ℝ → (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → -𝑦𝐴))
2524imp 123 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → -𝑦𝐴)
262, 7syl6com 35 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2726adantl 273 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2827imp 123 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑥 ∈ ℂ)
29 recn 7625 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3029ad3antrrr 479 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑦 ∈ ℂ)
31 negcon2 7886 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3228, 30, 31syl2anc 406 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
3332exp31 359 . . . . . 6 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3421, 33sylbi 120 . . . . 5 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3534impcom 124 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥)))
3635impcom 124 . . 3 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})) → (𝑥 = -𝑦𝑦 = -𝑥))
371, 18, 25, 36f1ocnv2d 5906 . 2 (𝐴 ⊆ ℝ → (𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴} ∧ 𝐹 = (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↦ -𝑦)))
3837simpld 111 1 (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  {crab 2379  wss 3021  cmpt 3929  ccnv 4476  1-1-ontowf1o 5058  cc 7498  cr 7499  -cneg 7805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-setind 4390  ax-resscn 7587  ax-1cn 7588  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-sub 7806  df-neg 7807
This theorem is referenced by:  negfi  10838
  Copyright terms: Public domain W3C validator