ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negf1o GIF version

Theorem negf1o 8329
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negf1o (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem negf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . . 3 𝐹 = (𝑥𝐴 ↦ -𝑥)
2 ssel 3149 . . . . . 6 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
3 renegcl 8208 . . . . . 6 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
42, 3syl6 33 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ ℝ))
54imp 124 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ ℝ)
62imp 124 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
7 recn 7935 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
8 negneg 8197 . . . . . . . . . 10 (𝑥 ∈ ℂ → --𝑥 = 𝑥)
98eqcomd 2183 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥 = --𝑥)
107, 9syl 14 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 = --𝑥)
1110eleq1d 2246 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥𝐴 ↔ --𝑥𝐴))
1211biimpcd 159 . . . . . 6 (𝑥𝐴 → (𝑥 ∈ ℝ → --𝑥𝐴))
1312adantl 277 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝑥 ∈ ℝ → --𝑥𝐴))
146, 13mpd 13 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → --𝑥𝐴)
15 negeq 8140 . . . . . 6 (𝑛 = -𝑥 → -𝑛 = --𝑥)
1615eleq1d 2246 . . . . 5 (𝑛 = -𝑥 → (-𝑛𝐴 ↔ --𝑥𝐴))
1716elrab 2893 . . . 4 (-𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (-𝑥 ∈ ℝ ∧ --𝑥𝐴))
185, 14, 17sylanbrc 417 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})
19 negeq 8140 . . . . . . 7 (𝑛 = 𝑦 → -𝑛 = -𝑦)
2019eleq1d 2246 . . . . . 6 (𝑛 = 𝑦 → (-𝑛𝐴 ↔ -𝑦𝐴))
2120elrab 2893 . . . . 5 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (𝑦 ∈ ℝ ∧ -𝑦𝐴))
22 simpr 110 . . . . . 6 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴)
2322a1i 9 . . . . 5 (𝐴 ⊆ ℝ → ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴))
2421, 23biimtrid 152 . . . 4 (𝐴 ⊆ ℝ → (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → -𝑦𝐴))
2524imp 124 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → -𝑦𝐴)
262, 7syl6com 35 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2726adantl 277 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2827imp 124 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑥 ∈ ℂ)
29 recn 7935 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3029ad3antrrr 492 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑦 ∈ ℂ)
31 negcon2 8200 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3228, 30, 31syl2anc 411 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
3332exp31 364 . . . . . 6 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3421, 33sylbi 121 . . . . 5 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3534impcom 125 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥)))
3635impcom 125 . . 3 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})) → (𝑥 = -𝑦𝑦 = -𝑥))
371, 18, 25, 36f1ocnv2d 6069 . 2 (𝐴 ⊆ ℝ → (𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴} ∧ 𝐹 = (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↦ -𝑦)))
3837simpld 112 1 (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {crab 2459  wss 3129  cmpt 4061  ccnv 4622  1-1-ontowf1o 5211  cc 7800  cr 7801  -cneg 8119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-setind 4533  ax-resscn 7894  ax-1cn 7895  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-sub 8120  df-neg 8121
This theorem is referenced by:  negfi  11220
  Copyright terms: Public domain W3C validator