ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elres GIF version

Theorem elres 4863
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.)
Assertion
Ref Expression
elres (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elres
StepHypRef Expression
1 relres 4855 . . . . 5 Rel (𝐵𝐶)
2 elrel 4649 . . . . 5 ((Rel (𝐵𝐶) ∧ 𝐴 ∈ (𝐵𝐶)) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
31, 2mpan 421 . . . 4 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
4 eleq1 2203 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ (𝐵𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
54biimpd 143 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ (𝐵𝐶) → ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
6 vex 2692 . . . . . . . . . . 11 𝑦 ∈ V
76opelres 4832 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐵𝑥𝐶))
87biimpi 119 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → (⟨𝑥, 𝑦⟩ ∈ 𝐵𝑥𝐶))
98ancomd 265 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
105, 9syl6com 35 . . . . . . 7 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1110ancld 323 . . . . . 6 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
12 an12 551 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) ↔ (𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1311, 12syl6ib 160 . . . . 5 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
14132eximdv 1855 . . . 4 (𝐴 ∈ (𝐵𝐶) → (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
153, 14mpd 13 . . 3 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
16 rexcom4 2712 . . . 4 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
17 df-rex 2423 . . . . 5 (∃𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1817exbii 1585 . . . 4 (∃𝑦𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
19 excom 1643 . . . 4 (∃𝑦𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) ↔ ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2016, 18, 193bitri 205 . . 3 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2115, 20sylibr 133 . 2 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
227simplbi2com 1421 . . . . . 6 (𝑥𝐶 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
234biimprd 157 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → 𝐴 ∈ (𝐵𝐶)))
2422, 23syl9 72 . . . . 5 (𝑥𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝐵𝐴 ∈ (𝐵𝐶))))
2524impd 252 . . . 4 (𝑥𝐶 → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶)))
2625exlimdv 1792 . . 3 (𝑥𝐶 → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶)))
2726rexlimiv 2546 . 2 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶))
2821, 27impbii 125 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  wrex 2418  cop 3535  cres 4549  Rel wrel 4552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-opab 3998  df-xp 4553  df-rel 4554  df-res 4559
This theorem is referenced by:  elsnres  4864
  Copyright terms: Public domain W3C validator