ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elres GIF version

Theorem elres 4978
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.)
Assertion
Ref Expression
elres (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elres
StepHypRef Expression
1 relres 4970 . . . . 5 Rel (𝐵𝐶)
2 elrel 4761 . . . . 5 ((Rel (𝐵𝐶) ∧ 𝐴 ∈ (𝐵𝐶)) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
31, 2mpan 424 . . . 4 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
4 eleq1 2256 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ (𝐵𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
54biimpd 144 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ (𝐵𝐶) → ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
6 vex 2763 . . . . . . . . . . 11 𝑦 ∈ V
76opelres 4947 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐵𝑥𝐶))
87biimpi 120 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → (⟨𝑥, 𝑦⟩ ∈ 𝐵𝑥𝐶))
98ancomd 267 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
105, 9syl6com 35 . . . . . . 7 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1110ancld 325 . . . . . 6 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
12 an12 561 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) ↔ (𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1311, 12imbitrdi 161 . . . . 5 (𝐴 ∈ (𝐵𝐶) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
14132eximdv 1893 . . . 4 (𝐴 ∈ (𝐵𝐶) → (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))))
153, 14mpd 13 . . 3 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
16 rexcom4 2783 . . . 4 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
17 df-rex 2478 . . . . 5 (∃𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1817exbii 1616 . . . 4 (∃𝑦𝑥𝐶 (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑦𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
19 excom 1675 . . . 4 (∃𝑦𝑥(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) ↔ ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2016, 18, 193bitri 206 . . 3 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑥𝑦(𝑥𝐶 ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2115, 20sylibr 134 . 2 (𝐴 ∈ (𝐵𝐶) → ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
227simplbi2com 1455 . . . . . 6 (𝑥𝐶 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶)))
234biimprd 158 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐶) → 𝐴 ∈ (𝐵𝐶)))
2422, 23syl9 72 . . . . 5 (𝑥𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝐵𝐴 ∈ (𝐵𝐶))))
2524impd 254 . . . 4 (𝑥𝐶 → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶)))
2625exlimdv 1830 . . 3 (𝑥𝐶 → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶)))
2726rexlimiv 2605 . 2 (∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴 ∈ (𝐵𝐶))
2821, 27impbii 126 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wrex 2473  cop 3621  cres 4661  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666  df-res 4671
This theorem is referenced by:  elsnres  4979
  Copyright terms: Public domain W3C validator